Extraction of Spectral Channels From Hyperspectral Images for Classification Purposes

This paper proposes a procedure to extract spectral channels of variable bandwidths and spectral positions from the hyperspectral image in such a way as to optimize the accuracy for a specific classification problem. In particular, each spectral channel ("s-band") is obtained by averaging a group of contiguous channels of the hyperspectral image ("h-bands"). Therefore, if one wants to define m s-bands, the problem can be formulated as the optimization of the related m starting and m ending h-bands. Toward this end, we propose to adopt, as an optimization criterion, an interclass distance computed on a training set and to generate a sequence of possible solutions by one of three possible search strategies. As the proposed formalization of the problem makes it analogous to a feature-selection problem, the proposed three strategies have been derived by modifying three feature-selection strategies, namely: 1) the "sequential forward selection", 2) the "steepest ascent," and 3) the "fast constrained search". Experimental results on a well-known hyperspectral data set confirm the effectiveness of the approach, which yields better results than other widely used methods. The importance of this kind of procedure lies in feature reduction for hyperspectral image classification or in the case-based design of the spectral bands of a programmable sensor. It represents a special case of feature extraction that is expected to be more powerful than feature selection. The kind of transformation used allows the interpretability of the new features (i.e., the spectral bands) to be saved

[1]  Qian Du,et al.  A linear constrained distance-based discriminant analysis for hyperspectral image classification , 2001, Pattern Recognit..

[2]  Lorenzo Bruzzone,et al.  A technique for feature selection in multiclass problems , 2000 .

[3]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[4]  Erzsébet Merényi,et al.  MAPPING COLORADO RIVER ECOSYSTEM RESOURCES IN GLEN CANYON: ANALYSIS OF HYPERSPECTRAL LOW-ALTITUDE AVIRIS IMAGERYT , 2006 .

[5]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[6]  Johannes R. Sveinsson,et al.  Classification and feature extraction of AVIRIS data , 1995, IEEE Trans. Geosci. Remote. Sens..

[7]  Paul Scheunders,et al.  A band selection technique for spectral classification , 2005, IEEE Geoscience and Remote Sensing Letters.

[8]  John A. Richards,et al.  Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Gunnar Rätsch,et al.  Invariant Feature Extraction and Classification in Kernel Spaces , 1999, NIPS.

[10]  Jack Sklansky,et al.  On Automatic Feature Selection , 1988, Int. J. Pattern Recognit. Artif. Intell..

[11]  Mineichi Kudo,et al.  Comparison of algorithms that select features for pattern classifiers , 2000, Pattern Recognit..

[12]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Hongbin Zhang,et al.  Feature selection using tabu search method , 2002, Pattern Recognit..

[14]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[15]  M. Bressan,et al.  Nonparametric discriminant analysis and nearest neighbor classification , 2003, Pattern Recognit. Lett..

[16]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[17]  David A. Landgrebe,et al.  Analytical Design of Multispectral Sensors , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[18]  MANABU ICHINO,et al.  Optimum feature selection by zero-one integer programming , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  Lorenzo Bruzzone,et al.  A new search algorithm for feature selection in hyperspectral remote sensing images , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[22]  Mingyi He,et al.  Band selection based on feature weighting for classification of hyperspectral data , 2005, IEEE Geoscience and Remote Sensing Letters.

[23]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[24]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognition Letters.

[25]  Pavel Pudil,et al.  Feature selection toolbox software package , 2002, Pattern Recognit. Lett..

[26]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Bor-Chen Kuo,et al.  A covariance estimator for small sample size classification problems and its application to feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[28]  P. Groves,et al.  Methodology For Hyperspectral Band Selection , 2004 .

[29]  Josef Kittler,et al.  Feature selection based on the approximation of class densities by finite mixtures of special type , 1995, Pattern Recognit..

[30]  David A. Landgrebe,et al.  HYPERSPECTRAL DATA ANALYSIS AND FEATURE REDUCTION VIA PROJECTION PURSUIT , 1999 .

[31]  T. A. Warner,et al.  An evaluation of spatial autocorrelation feature selection , 1999 .

[32]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[33]  Gabriele Moser,et al.  Comparison of feature reduction techniques for classification of hyperspectral remote sensing data , 2003, SPIE Remote Sensing.

[34]  Ruiliang Pu,et al.  Penalized discriminant analysis of in situ hyperspectral data for conifer species recognition , 1999, IEEE Trans. Geosci. Remote. Sens..

[35]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[36]  N. Keshava,et al.  Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[38]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Joydeep Ghosh,et al.  Adaptive Feature Spaces For Land Cover Classification With Limited Ground Truth Data , 2004, Int. J. Pattern Recognit. Artif. Intell..

[40]  Joydeep Ghosh,et al.  Adaptive feature selection for hyperspectral data analysis using a binary hierarchical classifier and tabu search , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[41]  David A. Landgrebe,et al.  Decision boundary feature extraction for nonparametric classification , 1993, IEEE Trans. Syst. Man Cybern..

[42]  Peter Bajcsy,et al.  Methodology for hyperspectral band and classification model selection , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[43]  S. Mallat A wavelet tour of signal processing , 1998 .

[44]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[46]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Antonio J. Plaza,et al.  Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[48]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[49]  D. Korycinskia,et al.  Adaptive Feature Selection for Hyperspectral Data Analysis , 2003 .

[50]  Paul Scheunders,et al.  Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery , 2002, Pattern Recognit. Lett..

[51]  Antanas Verikas,et al.  Feature selection with neural networks , 2002, Pattern Recognit. Lett..

[52]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[53]  Lei Tian,et al.  A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction , 2003, IEEE Trans. Geosci. Remote. Sens..

[54]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[55]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[56]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[57]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[58]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[59]  Lorenzo Bruzzone,et al.  An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection , 1995, IEEE Trans. Geosci. Remote. Sens..

[60]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[62]  Pavel Paclík,et al.  Adaptive floating search methods in feature selection , 1999, Pattern Recognit. Lett..

[63]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..