Digital Bioassays: Theory, Applications, and Perspectives.

[1]  Dan Luo,et al.  Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes , 2005, Nature Biotechnology.

[2]  Peidong Wang,et al.  An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples. , 2014, Lab on a chip.

[3]  U. Gösele,et al.  Monodisperse Diameter‐Modulated Gold Microwires , 2002 .

[4]  Taekjip Ha,et al.  An Improved Surface Passivation Method for Single-Molecule Studies , 2014, Nature Methods.

[5]  Todd Munson,et al.  Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. , 2011, Analytical chemistry.

[6]  Nae Yoon Lee,et al.  Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR. , 2012, The Analyst.

[7]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[8]  Jing Wang,et al.  Self-assembly of size-controlled liposomes on DNA nanotemplates , 2016, Nature chemistry.

[9]  Hans H. Gorris,et al.  Single molecule kinetics of horseradish peroxidase exposed in large arrays of femtoliter-sized fused silica chambers. , 2013, The Analyst.

[10]  Jennifer L. Osborn,et al.  Direct multiplexed measurement of gene expression with color-coded probe pairs , 2008, Nature Biotechnology.

[11]  Michael J Sailor,et al.  Biomolecular screening with encoded porous-silicon photonic crystals , 2002, Nature Materials.

[12]  Yusi Fu,et al.  Digital polymerase chain reaction in an array of femtoliter polydimethylsiloxane microreactors. , 2012, Analytical chemistry.

[13]  H. Yin,et al.  Drugging Membrane Protein Interactions. , 2016, Annual review of biomedical engineering.

[14]  Xingyu Jiang,et al.  Microfluidic Tools for DNA Analysis , 2013 .

[15]  Bing Sun,et al.  Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. , 2011, Journal of the American Chemical Society.

[16]  Andrew D Griffiths,et al.  Miniaturising the laboratory in emulsion droplets. , 2006, Trends in biotechnology.

[17]  Boris Rotman,et al.  MEASUREMENT OF ACTIVITY OF SINGLE MOLECULES OF β-D-GALACTOSIDASE , 1961 .

[18]  P. Craw,et al.  Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. , 2012, Lab on a chip.

[19]  David R Walt,et al.  Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. , 2006, Nano letters.

[20]  Hiroyuki Noji,et al.  A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate. , 2015, The Analyst.

[21]  Rustem F Ismagilov,et al.  Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. , 2011, Analytical chemistry.

[22]  Stephen R. Quake,et al.  Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria , 2006, Science.

[23]  Kouhei Tsumoto,et al.  Open sandwich ELISA: A novel immunoassay based on the interchain interaction of antibody variable region , 1996, Nature Biotechnology.

[24]  Taekjip Ha,et al.  Probing Cellular Protein Complexes via Single Molecule Pull-down , 2011, Nature.

[25]  M. Baker Digital PCR hits its stride , 2012, Nature Methods.

[26]  H. Noji,et al.  Arrayed water-in-oil droplet bilayers for membrane transport analysis. , 2016, Lab on a chip.

[27]  David R Walt,et al.  Distinct and long-lived activity states of single enzyme molecules. , 2008, Journal of the American Chemical Society.

[28]  D. Duffy,et al.  Development and Validation of Digital Enzyme-Linked Immunosorbent Assays for Ultrasensitive Detection and Quantification of Clostridium difficile Toxins in Stool , 2015, Journal of Clinical Microbiology.

[29]  R. Yolken,et al.  Ultrasensitive enzymatic radioimmunoassay: application to detection of cholera toxin and rotavirus. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Peter Lu,et al.  Single-molecule Enzymology* , 1999, The Journal of Biological Chemistry.

[31]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[32]  Christopher M. Hindson,et al.  Absolute quantification by droplet digital PCR versus analog real-time PCR , 2013, Nature Methods.

[33]  Anupam Singhal,et al.  Megapixel digital PCR , 2011, Nature Methods.

[34]  H. Craighead,et al.  Zero-mode waveguides for single-molecule analysis. , 2012, Annual review of biophysics.

[35]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  David M. Rissin,et al.  Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations , 2010, Nature Biotechnology.

[37]  Hiroyuki Fujita,et al.  Microfabricated arrays of femtoliter chambers allow single molecule enzymology , 2005, Nature Biotechnology.

[38]  Nico A J M Sommerdijk,et al.  A virus-based single-enzyme nanoreactor. , 2007, Nature nanotechnology.

[39]  G M Whitesides,et al.  Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. , 1996, Annual review of biophysics and biomolecular structure.

[40]  Luke P. Lee,et al.  Digital LAMP in a sample self-digitization (SD) chip. , 2012, Lab on a chip.

[41]  D. Walt,et al.  Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles. , 2013, Journal of visualized experiments : JoVE.

[42]  Miguel Valcárcel,et al.  Principles of Analytical Chemistry , 2000 .

[43]  Antoine M. van Oijen,et al.  Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited , 2006, Nature chemical biology.

[44]  Hiroyuki Fujita,et al.  Highly coupled ATP synthesis by F1-ATPase single molecules , 2005, Nature.

[45]  Hiroyuki Noji,et al.  Large-scale femtoliter droplet array for digital counting of single biomolecules. , 2012, Lab on a chip.

[46]  Rustem F Ismagilov,et al.  Digital, ultrasensitive, end-point protein measurements with large dynamic range via Brownian trapping with drift. , 2014, Journal of the American Chemical Society.

[47]  Wei Jin,et al.  Self-priming compartmentalization digital LAMP for point-of-care. , 2012, Lab on a chip.

[48]  David R. Walt,et al.  Single-Molecule Arrays for Ultrasensitive Detection of Host Immune Response to Dengue Virus Infection , 2015, Journal of Clinical Microbiology.

[49]  H. Noji,et al.  High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition , 2014, Scientific Reports.

[50]  Henrik Zetterberg,et al.  Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. , 2013, Resuscitation.

[51]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[52]  David M. Rissin,et al.  A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood. , 2015, Journal of immunological methods.

[53]  Qun Zhong,et al.  Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. , 2011, Lab on a chip.

[54]  Guobin Luo,et al.  Fluctuating enzymes: lessons from single-molecule studies. , 2005, Accounts of chemical research.

[55]  F. Steemers,et al.  Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays , 2000, Nature Biotechnology.

[56]  A. Lee,et al.  1-Million droplet array with wide-field fluorescence imaging for digital PCR. , 2011, Lab on a chip.

[57]  Colin Echeverría Aitken,et al.  Real-time tRNA transit on single translating ribosomes at codon resolution , 2010, Nature.

[58]  P. Tabeling,et al.  Droplet-based microfluidics at the femtolitre scale. , 2015, Lab on a chip.

[59]  Hans H. Gorris,et al.  A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase. , 2014, Journal of the American Chemical Society.

[60]  D. Walt,et al.  Observing Single Enzyme Molecules Interconvert between Activity States upon Heating , 2014, PloS one.

[61]  Ho Cheung Shum,et al.  Microfluidic generation of multifunctional quantum dot barcode particles. , 2011, Journal of the American Chemical Society.

[62]  S H Neoh,et al.  Quantitation of targets for PCR by use of limiting dilution. , 1992, BioTechniques.

[63]  Tza-Huei Wang,et al.  Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP). , 2015, Lab on a chip.

[64]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[65]  David H Wilson,et al.  Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies. , 2012, Lab on a chip.

[66]  Haoshuang Gu,et al.  Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. , 2014, Chemical reviews.

[67]  Jun Ohta,et al.  A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay , 2014 .

[68]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[69]  Chad A Mirkin,et al.  On-Wire Lithography , 2005, Science.

[70]  A Manz,et al.  Chemical amplification: continuous-flow PCR on a chip. , 1998, Science.

[71]  David H Wilson,et al.  Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. , 2011, Analytical chemistry.

[72]  David H Wilson,et al.  Single molecule enzyme-linked immunosorbent assays: theoretical considerations. , 2012, Journal of immunological methods.

[73]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[74]  C. Fan,et al.  Isothermal Amplification of Nucleic Acids. , 2015, Chemical reviews.

[75]  Hans H. Gorris,et al.  Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. , 2009, Journal of the American Chemical Society.

[76]  Kae Sato,et al.  Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. , 2004, Lab on a chip.

[77]  Ramon Grima,et al.  Single‐molecule enzymology à la Michaelis–Menten , 2013, The FEBS journal.

[78]  Linan Song,et al.  Multiplexed single molecule immunoassays. , 2013, Lab on a chip.

[79]  P. Tinnefeld,et al.  Breaking the concentration limit of optical single-molecule detection. , 2014, Chemical Society reviews.

[80]  David H Wilson,et al.  The Simoa HD-1 Analyzer , 2016, Journal of laboratory automation.

[81]  D. Walt,et al.  Using Antigen-antibody Binding Kinetic Parameters to Understand Single-Molecule Array Immunoassay Performance. , 2016, Analytical chemistry.

[82]  Howon Lee,et al.  Colour-barcoded magnetic microparticles for multiplexed bioassays. , 2010, Nature materials.

[83]  Mehmet Toner,et al.  Multifunctional Encoded Particles for High-Throughput Biomolecule Analysis , 2007, Science.

[84]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[85]  Xingyu Jiang,et al.  Nanomaterials for Ultrasensitive Protein Detection , 2013, Advanced materials.

[86]  David R Walt,et al.  Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. , 2015, The Analyst.

[87]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[88]  Manuel A Palacios,et al.  Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. , 2009, Nature chemistry.

[89]  J. Micklefield,et al.  Selective covalent protein immobilization: strategies and applications. , 2009, Chemical reviews.

[90]  Xingyu Jiang,et al.  Barcoded microchips for biomolecular assays. , 2015, Analytical chemistry.

[91]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[92]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[93]  Y. Urano,et al.  Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity , 2014, Nature Communications.

[94]  P. Gill,et al.  Nucleic Acid Isothermal Amplification Technologies—A Review , 2008, Nucleosides, nucleotides & nucleic acids.