ADVANCES IN RANKING AND SELECTION: VARIANCE ESTIMATION AND CONSTRAINTS

[1]  Stephen E. Chick,et al.  New Two-Stage and Sequential Procedures for Selecting the Best Simulated System , 2001, Oper. Res..

[2]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[3]  W. David Kelton,et al.  Sequential selection procedures: Using sample means to improve efficiency , 2005, Eur. J. Oper. Res..

[4]  Barry L. Nelson,et al.  A sequential procedure for neighborhood selection-of-the-best in optimization via simulation , 2006, Eur. J. Oper. Res..

[5]  S. Andradóttir,et al.  Fully sequential procedures for comparing constrained systems via simulation , 2010 .

[6]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae (Second Edition) , 2003 .

[7]  Loo Hay Lee,et al.  A multi-objective selection procedure of determining a Pareto set , 2009, Comput. Oper. Res..

[8]  Keebom Kang,et al.  Combining Standardized Time Series Area and Cramér-von Mises Variance Estimators , 2007 .

[9]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[10]  Nitis Mukhopadhyay,et al.  Some comments on two-stage selection procedures , 1979 .

[11]  Kirk C. Benson,et al.  Ranking and Selection Procedures for Simulation , 2006, Proceedings of the 2006 Winter Simulation Conference.

[12]  Loo Hay Lee,et al.  Optimal Computing Budget Allocation for constrained optimization , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[13]  Loo Hay Lee,et al.  Integration of Statistical Selection with Search Mechanism for Solving Multi-Objective Simulation-Optimization Problems , 2006, Proceedings of the 2006 Winter Simulation Conference.

[14]  Keebom Kang,et al.  Cramér-von Mises variance estimators for simulations , 1991, WSC '91.

[15]  Barry L. Nelson,et al.  A fully sequential procedure for indifference-zone selection in simulation , 2001, TOMC.

[16]  Chun-Hung Chen,et al.  Computing efforts allocation for ordinal optimization and discrete event simulation , 2000, IEEE Trans. Autom. Control..

[17]  Douglas J. Morrice,et al.  Ranking and Selection with Multiple "Targets" , 2006, Proceedings of the 2006 Winter Simulation Conference.

[18]  L. Schruben,et al.  Properties of standardized time series weighted area variance estimators , 1990 .

[19]  A. Tamhane Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons , 1995 .

[20]  Loo Hay Lee,et al.  Optimal computing budget allocation for multi-objective simulation models , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[21]  S. Dalal,et al.  ALLOCATION OF OBSERVATIONS IN RANKING AND SELECTION WITH UNEQUAL VARIANCES , 1971 .

[22]  Y. Rinott On two-stage selection procedures and related probability-inequalities , 1978 .

[23]  F. E. Satterthwaite Synthesis of variance , 1941 .

[24]  T. Santer,et al.  Designing Experiments for Selecting a Normal Population with a Large Mean and a Small Variance , 1983 .

[25]  Takayuki Osogami,et al.  Finding probably best systems quickly via simulations , 2006, TOMC.

[26]  James R. Wilson,et al.  Exact expected values of variance estimators for simulation , 2007 .

[27]  B. Nelson,et al.  Using common random numbers for indifference-zone selection and multiple comparisons in simulation , 1995 .

[28]  Seong-Hee Kim,et al.  An improved standardized time series Durbin-Watson variance estimator for steady-state simulation , 2009, Oper. Res. Lett..

[29]  James R. Wilson,et al.  Overlapping Variance Estimators for Simulation , 2007, Oper. Res..

[30]  Douglas J. Morrice,et al.  A Multiple Attribute Utility Theory Approach to Ranking and Selection , 2001, Manag. Sci..

[31]  Chun-Hung Chen A lower bound for the correct subset-selection probability and its application to discrete-event system simulations , 1996, IEEE Trans. Autom. Control..

[32]  Barry L. Nelson,et al.  The tradeoff between sampling and switching: New sequential procedures for indifference-zone selection , 2005 .

[33]  M. Hartmann An improvement on paulson's procedure for selecting the poprlation with the largest mean from k normal populations with a common unknown variance , 1991 .

[34]  Barry L. Nelson,et al.  Ranking and Selection for Steady-State Simulation: Procedures and Perspectives , 2002, INFORMS J. Comput..

[35]  Enver Yücesan,et al.  A new perspective on feasibility determination , 2008, 2008 Winter Simulation Conference.

[36]  Alireza Kabirian,et al.  Selection of the best with stochastic constraints , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[37]  E. Paulson A Sequential Procedure for Selecting the Population with the Largest Mean from $k$ Normal Populations , 1964 .

[38]  Barry L. Nelson,et al.  On the Asymptotic Validity of Fully Sequential Selection Procedures for Steady-State Simulation , 2006, Oper. Res..

[39]  Christos Alexopoulos,et al.  Output Data Analysis , 2007 .

[40]  James R. Wilson,et al.  Efficient Computation of Overlapping Variance Estimators for Simulation , 2007, INFORMS J. Comput..

[41]  Stephen E. Chick,et al.  Chapter 9 Subjective Probability and Bayesian Methodology , 2006, Simulation.

[42]  David Goldsman,et al.  Selection procedures with standardized time series variance estimators , 1999, WSC '99.

[43]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[44]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..