Growth and field-emission property of tungsten oxide nanotip arrays

Large-area, quasialigned nanotips of tungsten oxide have been grown by a two-step high-temperature, catalyst-free, physical evaporation deposition process. The tungsten oxide nanotips are single crystalline with growth direction of [010]. The tungsten oxide nanotips exhibit excellent field-emission properties with a low threshold field (for an emission current density of 10mA∕cm2) ∼4.37MV∕m and uniform emission from the entire arrays, as well as high time stability. These results make tungsten oxide nanotip arrays a competitive candidate for field-emission displays.

[1]  N. Xu,et al.  Field emission from crystalline copper sulphide nanowire arrays , 2002 .

[2]  Jianxun Xu,et al.  Field emission from AlN nanoneedle arrays , 2004 .

[3]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[4]  Laszlo B. Kish,et al.  Semiconductor gas sensors based on nanostructured tungsten oxide , 2001 .

[5]  Zhong Lin Wang,et al.  In situ imaging of field emission from individual carbon nanotubes and their structural damage , 2002 .

[6]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[7]  H. Arakawa,et al.  Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. , 2001, Chemical communications.

[8]  Jun Chen,et al.  Temperature dependence of field emission from cupric oxide nanobelt films , 2003 .

[9]  B. Xiang,et al.  Synthesis and field emission properties of TiSi2 nanowires , 2005 .

[10]  Shui-Tong Lee,et al.  Oriented silicon carbide nanowires: Synthesis and field emission properties , 2000 .

[11]  Y. Bando,et al.  Field emission from MoO3 nanobelts , 2002 .

[12]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[13]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[14]  J. Augustynski,et al.  Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. , 2001, Journal of the American Chemical Society.

[15]  Y. Bando,et al.  ZnO nanoneedles with tip surface perturbations: Excellent field emitters , 2004 .

[16]  Jun Chen,et al.  Large‐Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties , 2003 .

[17]  C. Balasubramanian,et al.  Field emission from open ended aluminum nitride nanotubes , 2002 .

[18]  N. Xu,et al.  Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties , 2002 .

[19]  Dmitri Golberg,et al.  Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires , 2003 .

[20]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[21]  L. Vila,et al.  Growth and field-emission properties of vertically aligned cobalt nanowire arrays , 2004 .

[22]  E. Wang,et al.  Tuning the field-emission properties of tungsten oxide nanorods. , 2005, Small.

[23]  Yong Ding,et al.  Three‐Dimensional Tungsten Oxide Nanowire Networks , 2005 .

[24]  C. Spindt,et al.  Physical properties of thin‐film field emission cathodes with molybdenum cones , 1976 .

[25]  Investigation of spatial current imaging in mesoscopic systems , 2003 .