Construction and Reduction Methods of Web Spam Identification Index System

[1]  Steven Lawrence Fernandes,et al.  Recognizing Faces Across Age Progressions and Under Occlusion , 2017 .

[2]  Ashutosh Kumar Singh,et al.  Comprehensive Literature Review on Machine Learning Structures for Web Spam Classification , 2015 .

[3]  Maoguo Gong,et al.  A Multiobjective Sparse Feature Learning Model for Deep Neural Networks , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Shekoofeh Ghiam,et al.  A Survey on Web Spam Detection Methods: Taxonomy , 2012, ArXiv.

[5]  Tie Qiu,et al.  Remote Sensing Image Classification Based on Ensemble Extreme Learning Machine With Stacked Autoencoder , 2017, IEEE Access.

[6]  Marc Najork,et al.  Spam, damn spam, and statistics: using statistical analysis to locate spam web pages , 2004, WebDB '04.

[7]  Changqing Shen,et al.  Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery , 2017, IEEE Access.

[8]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[9]  Behzad Moshiri,et al.  Designing a web spam classifier based on feature fusion in the Layered Multi-population Genetic Programming framework , 2013, Proceedings of the 16th International Conference on Information Fusion.

[10]  Luca Becchetti,et al.  A reference collection for web spam , 2006, SIGF.

[11]  Zhang Yi,et al.  Non-Divergence of Stochastic Discrete Time Algorithms for PCA Neural Networks , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Jiawei Han,et al.  Survey on web spam detection: principles and algorithms , 2012, SKDD.

[13]  Ling Liu,et al.  A Parameterized Approach to Spam-Resilient Link Analysis of the Web , 2009, IEEE Transactions on Parallel and Distributed Systems.

[14]  Yuancheng Li,et al.  Construction and Reduction Methods of Vulnerability Index System in Power SCADA , 2014 .

[15]  Yu Tsao,et al.  A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation , 2017, IEEE Transactions on Biomedical Engineering.

[16]  Thierry Bouwmans,et al.  Subspace Learning for Background Modeling: A Survey , 2009 .

[17]  Wen-Long Chin,et al.  Blind False Data Injection Attack Using PCA Approximation Method in Smart Grid , 2015, IEEE Transactions on Smart Grid.

[18]  Dan Zhang,et al.  Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information , 2016, IEEE Geoscience and Remote Sensing Letters.

[19]  Bin Li,et al.  Detection of Double Compressed AMR Audio Using Stacked Autoencoder , 2017, IEEE Transactions on Information Forensics and Security.

[20]  Florentino Fernández Riverola,et al.  A dynamic model for integrating simple web spam classification techniques , 2015, Expert Syst. Appl..

[21]  Guangming Shi,et al.  Bottom–Up Visual Saliency Estimation With Deep Autoencoder-Based Sparse Reconstruction , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Huaxiang Zhang,et al.  Analysis on the content features and their correlation of web pages for spam detection , 2015 .

[23]  Weihua Li,et al.  Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network , 2017, IEEE Transactions on Instrumentation and Measurement.

[24]  Sihai Zhang,et al.  Energy efficiency optimization in relay-assisted networks with energy harvesting relay constraints , 2015 .

[25]  D. R. Patil,et al.  Web spam detection using SVM classifier , 2015, 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO).

[26]  Juan Martínez-Romo,et al.  Web Spam Detection: New Classification Features Based on Qualified Link Analysis and Language Models , 2010, IEEE Transactions on Information Forensics and Security.