Pattern classification using functional magnetic resonance imaging.

Over the past decade, pattern classification methods have become widespread in functional magnetic resonance imaging (fMRI). These methods, typically referred to as multivoxel pattern analysis (MVPA) or multivariate pattern decoding, are now applied to a wide range of neuroscientific questions. There has been particular interest in applying these approaches, e.g., in detecting deception or for diagnostic purposes. In this review, we will focus on what can be achieved by pattern classification analyses of fMRI data; the strengths and weaknesses of this approach; and the biological processes giving rise to the signals measured by this method. Finally, we will discuss how these multivariate approaches are starting to be applied to the analysis of anatomical magnetic resonance imaging (MRI) and magnetoencephalographic (MEG) data. WIREs Cogni Sci 2011 2 568-579 DOI: 10.1002/wcs.141 For further resources related to this article, please visit the WIREs website.

[1]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[2]  Damien J. Mannion,et al.  Orientation anisotropies in human visual cortex. , 2010, Journal of neurophysiology.

[3]  Raymond J. Dolan,et al.  fMRI Activity Patterns in Human LOC Carry Information about Object Exemplars within Category , 2008, Journal of Cognitive Neuroscience.

[4]  Zoe Kourtzi,et al.  Learning-dependent plasticity with and without training in the human brain , 2010, Proceedings of the National Academy of Sciences.

[5]  Geoffrey M Boynton,et al.  The Representation of Behavioral Choice for Motion in Human Visual Cortex , 2007, The Journal of Neuroscience.

[6]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[7]  Z. Kourtzi,et al.  Neural coding of global form in the human visual cortex. , 2008, Journal of neurophysiology.

[8]  Anthony D. Wagner,et al.  Detecting individual memories through the neural decoding of memory states and past experience , 2010, Proceedings of the National Academy of Sciences.

[9]  Hans P. Op de Beeck,et al.  Against hyperacuity in brain reading: Spatial smoothing does not hurt multivariate fMRI analyses? , 2010, NeuroImage.

[10]  G. Rees,et al.  Fine-scale activity patterns in high-level visual areas encode the category of invisible objects. , 2008, Journal of vision.

[11]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[12]  M. Giese,et al.  Flexible Coding for Categorical Decisions in the Human Brain , 2007, The Journal of Neuroscience.

[13]  Janaina Mourão Miranda,et al.  The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data , 2006, NeuroImage.

[14]  Zoe Kourtzi,et al.  Flexible learning of natural statistics in the human brain. , 2009, Journal of neurophysiology.

[15]  Clifford R. Jack,et al.  Predicting Clinical Scores from Magnetic Resonance Scans in Alzheimer's Disease , 2010, NeuroImage.

[16]  Bryan R. Conroy,et al.  Function-based Intersubject Alignment of Human Cortical Anatomy , 2009, Cerebral cortex.

[17]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[18]  G. Barnes,et al.  Identifying spatially overlapping local cortical networks with MEG , 2009, Human brain mapping.

[19]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[20]  David J. Heeger,et al.  Inferring population responses in human visual cortex with classification analysis , 2010 .

[21]  Geraint Rees,et al.  Multivoxel fMRI analysis reveals the representation of spatial frequency information in human primary visual cortex , 2010 .

[22]  Geraint Rees,et al.  Decoding of coherent but not incoherent motion signals in early dorsal visual cortex , 2011, NeuroImage.

[23]  Steven C. R. Williams,et al.  Describing the Brain in Autism in Five Dimensions—Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach , 2010, The Journal of Neuroscience.

[24]  Jascha D. Swisher,et al.  Multiscale Pattern Analysis of Orientation-Selective Activity in the Primary Visual Cortex , 2010, The Journal of Neuroscience.

[25]  Hans P. Op de Beeck,et al.  Probing the mysterious underpinnings of multi-voxel fMRI analyses , 2010, NeuroImage.

[26]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[27]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[28]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[29]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[30]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[31]  R. van Ee,et al.  Visual Cortex Allows Prediction of Perceptual States during Ambiguous Structure-From-Motion , 2007, The Journal of Neuroscience.

[32]  João Ricardo Sato,et al.  Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data , 2009, Journal of Cognitive Neuroscience.

[33]  Stephen D. Mayhew,et al.  Article Learning Shapes the Representation of Behavioral Choice in the Human Brain , 2022 .

[34]  Nikolaus Kriegeskorte,et al.  How does an fMRI voxel sample the neuronal activity pattern: Compact-kernel or complex spatiotemporal filter? , 2010, NeuroImage.

[35]  Jerry L. Prince,et al.  A Geometry-Driven Optical Flow Warping for Spatial Normalization of Cortical Surfaces , 2008, IEEE Transactions on Medical Imaging.

[36]  Essa Yacoub,et al.  Mechanisms underlying decoding at 7 T: Ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye , 2010, NeuroImage.

[37]  D. Hassabis,et al.  Decoding Neuronal Ensembles in the Human Hippocampus , 2009, Current Biology.

[38]  Guillermo A. Cecchi,et al.  Improved mapping of information distribution across the cortical surface with the support vector machine , 2008, Neural Networks.

[39]  Jonathan D. Cohen,et al.  Reproducibility Distinguishes Conscious from Nonconscious Neural Representations , 2010, Science.

[40]  D. Mitchell,et al.  Brief daily binocular vision prevents monocular deprivation effects in visual cortex , 2007, The European journal of neuroscience.

[41]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[43]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[44]  Z. Kourtzi,et al.  Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain , 2008, The Journal of Neuroscience.

[45]  T. Bonhoeffer,et al.  Mapping Retinotopic Structure in Mouse Visual Cortex with Optical Imaging , 2002, The Journal of Neuroscience.

[46]  Nikolaus Kriegeskorte,et al.  Comparison of multivariate classifiers and response normalizations for pattern-information fMRI , 2010, NeuroImage.

[47]  Scott A. Huettel,et al.  Within- and cross-participant classifiers reveal different neural coding of information , 2011, NeuroImage.

[48]  Geoffrey M Boynton,et al.  Imaging orientation selectivity: decoding conscious perception in V1 , 2005, Nature Neuroscience.

[49]  Stephen D. Van Hooser,et al.  Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal , 2005, The Journal of Neuroscience.

[50]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[51]  Tom M. Mitchell,et al.  Classifying Instantaneous Cognitive States from fMRI Data , 2003, AMIA.

[52]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[53]  T. Ethofer,et al.  Decoding of emotional information in voice-sensitive cortices , 2009, NeuroImage.

[54]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[55]  D. Hassabis,et al.  Decoding Individual Episodic Memory Traces in the Human Hippocampus , 2010, Current Biology.

[56]  Alice J. O'Toole,et al.  Dissociable Neural Patterns of Facial Identity across Changes in Viewpoint , 2010, Journal of Cognitive Neuroscience.

[57]  R. Lund,et al.  Receptive field properties of single neurons in rat primary visual cortex. , 1999, Journal of neurophysiology.

[58]  Stephen Jose Hanson,et al.  High-resolution imaging of the fusiform face area (FFA) using multivariate non-linear classifiers shows diagnosticity for non-face categories , 2011, NeuroImage.

[59]  Masa-aki Sato,et al.  Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders , 2008, Neuron.