Surface wettability of sandstone and shale: Implication for CO2 storage

[1]  Yi Zhang,et al.  CO2 transport and carbonate precipitation in the coupled diffusion-reaction process during CO2 storage , 2023, Fuel.

[2]  R. Gholami,et al.  Surface wettability alteration of shales exposed to CO2: Implication for long-term integrity of geological storage sites , 2021 .

[3]  A. Al-Yaseri,et al.  CO2/Basalt's Interfacial Tension and Wettability Directly from Gas Density: Implications for Carbon Geo-Sequestration , 2021 .

[4]  Chi Chen,et al.  Experimental investigation of spontaneous imbibition in tight sandstone reservoirs , 2020 .

[5]  Nurudeen Yekeen,et al.  Wettability of rock/CO2/brine systems: A critical review of influencing parameters and recent advances , 2020 .

[6]  Z. Weishauptová,et al.  Effect of shale properties on CH4 and CO2 sorption capacity in Czech Silurian shales , 2020 .

[7]  M. Abbaszadeh,et al.  The influence of temperature on wettability alteration during CO2 storage in saline aquifers , 2020, International Journal of Greenhouse Gas Control.

[8]  P. Ranjith,et al.  CO2-brine-caprock interaction: Reactivity experiments on mudstone caprock of South-west Hub geo-sequestration project , 2020 .

[9]  Qiang Sun,et al.  CO2-induced asphaltene deposition and wettability alteration on a pore interior surface , 2019, Fuel.

[10]  Yajun Li,et al.  Adsorption and dissolution behaviors of CO2 and n-alkane mixtures in shale: Effects of the alkane type, shale properties and temperature , 2019, Fuel.

[11]  Shuyu Sun,et al.  Darcy-scale phase equilibrium modeling with gravity and capillarity , 2019, J. Comput. Phys..

[12]  Sidqi A. Abu-Khamsin,et al.  Wettability of rock/CO2/brine and rock/oil/CO2-enriched-brine systems:Critical parametric analysis and future outlook. , 2019, Advances in colloid and interface science.

[13]  James A. Sorensen,et al.  Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales , 2017 .

[14]  S. Iglauer,et al.  CO2 and CH4 Wettabilities of Organic-Rich Shale , 2017 .

[15]  S. Iglauer,et al.  Influence of shale‐total organic content on CO2 geo‐storage potential , 2017 .

[16]  S. Iglauer,et al.  CO2 storage in carbonates: Wettability of calcite , 2017 .

[17]  Jared T. Freiburg,et al.  Effects of Mineral Surface Properties on Supercritical CO2 Wettability in a Siliciclastic Reservoir , 2017 .

[18]  S. Iglauer CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage. , 2017, Accounts of chemical research.

[19]  S. Iglauer,et al.  On wettability of shale rocks. , 2016, Journal of colloid and interface science.

[20]  S. Iglauer,et al.  Receding and advancing (CO2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity , 2016 .

[21]  S. Iglauer,et al.  Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration. , 2016, Journal of colloid and interface science.

[22]  S. Iglauer,et al.  CO2 wettability of caprocks: Implications for structural storage capacity and containment security , 2015 .

[23]  Xiangjun Liu,et al.  An investigation of the fractal characteristics of the Upper Ordovician Wufeng Formation shale using nitrogen adsorption analysis , 2015 .

[24]  M. Piri,et al.  Co-sequestration of SO 2 with supercritical CO 2 in carbonates: An experimental study of capillary trapping, relative permeability, and capillary pressure , 2015 .

[25]  S. Iglauer,et al.  Influence of temperature and pressure on quartz-water-CO₂ contact angle and CO₂-water interfacial tension. , 2015, Journal of Colloid and Interface Science.

[26]  Andreas Busch,et al.  CO2 wettability of seal and reservoir rocks and the implications for carbon geo‐sequestration , 2015 .

[27]  Martin J. Blunt,et al.  Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography , 2014 .

[28]  K. Wolf,et al.  Wettability Evaluation of a CO2/Water/Bentheimer Sandstone System: Contact Angle, Dissolution, and Bubble Size , 2014 .

[29]  D. Broseta,et al.  Are rocks still water‐wet in the presence of dense CO2 or H2S? , 2012 .

[30]  M. Blunt,et al.  Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. , 2012, Journal of colloid and interface science.

[31]  M. Blunt,et al.  Measurements of the capillary trapping of super‐critical carbon dioxide in Berea sandstone , 2011 .

[32]  Hamdi A. Tchelepi,et al.  Gravity currents with residual trapping , 2008, Journal of Fluid Mechanics.

[33]  Pierre Chiquet,et al.  Wettability alteration of caprock minerals by carbon dioxide , 2007 .

[34]  I. Gaus,et al.  Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea) , 2005 .

[35]  K. H. Ebert,et al.  Grenzflächenspannungen, Tropfengrößen und Kontaktwinkel im Zweiphasensystem H2O/CO2 bei Temperaturen von 298 bis 333 K und Drücken bis 30 MPa , 1997 .

[36]  N. Morrow Capillary Pressure Correlations For Uniformly Wetted Porous Media , 1976 .

[37]  Ole Torsæter,et al.  Wettability behaviour of CO2 at storage conditions , 2013 .