Description of Afipia birgiae sp. nov. and Afipia massiliensis sp. nov. and recognition of Afipia felis genospecies A.

On the basis of phenotypic characterization and DNA relatedness, two novel species are proposed, Afipia birgiae sp. nov. (type strain 34632T = CIP 106344T = CCUG 43108T) and Afipia massiliensis sp. nov. (type strain 34633T = CIP 107022T = CCUG 45153T). A new genospecies is described, named Afipia felis genospecies A, closely related to Afipia felis. The complexity encountered in the taxonomy of the Bradyrhizobiaceae group within the alpha-2 subgroup of the Proteobacteria is discussed and the description of these novel species highlights the need for new tools for phylogenetic analysis in the group. The novel species herein described are fastidious bacteria isolated from a hospital water supply in co-culture with amoebae. It is hypothesized that this group of bacteria are a potential cause of nosocomial infections.

[1]  A. Haas,et al.  Afipia felis induces uptake by macrophages directly into a nonendocytic compartment , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  B. Scola,et al.  Isolation of new fastidious alpha Proteobacteria and Afipia felis from hospital water supplies by direct plating and amoebal co-culture procedures. , 2000, FEMS microbiology ecology.

[3]  J. Fuhrmann,et al.  Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. , 2000, International journal of systematic and evolutionary microbiology.

[4]  P. Normand,et al.  High-resolution phylogenetic analysis of NO2--oxidizing Nitrobacter species using the rrs-rrl IGS sequence and rrl genes. , 2000, International journal of systematic and evolutionary microbiology.

[5]  Ju-Young Park,et al.  Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. , 2000, International journal of systematic and evolutionary microbiology.

[6]  B. Tindall,et al.  Rhodopseudomonas rhenobacensis sp. nov., a new nitrate-reducing purple non-sulfur bacterium. , 2000, International journal of systematic and evolutionary microbiology.

[7]  D. Raoult,et al.  Afipia felis in hospital water supply in association with free-living amoebae , 1999, The Lancet.

[8]  J. Burdon,et al.  Molecular Diversity of Rhizobia Occurring on Native Shrubby Legumes in Southeastern Australia , 1998, Applied and Environmental Microbiology.

[9]  M. Jetten,et al.  Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. , 1998, Archives of Microbiology.

[10]  V. Roux,et al.  Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. , 1998, International journal of systematic bacteriology.

[11]  P. Manning,et al.  Sequence-Based Classification Scheme for the GenusLegionella Targeting the mip Gene , 1998, Journal of Clinical Microbiology.

[12]  Didier Raoult,et al.  rpoB sequence analysis as a novel basis for bacterial identification , 1997, Molecular microbiology.

[13]  D. Raoult,et al.  Afipia clevelandensis antibodies and cross-reactivity with Brucella spp. and Yersinia enterocolitica O:9 , 1997, Clinical and diagnostic laboratory immunology.

[14]  Z. Cui,et al.  Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. , 1995, International journal of systematic bacteriology.

[15]  D. Stahl,et al.  Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria , 1994, Journal of bacteriology.

[16]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[17]  E. Stackebrandt,et al.  Phylogenetic Analysis of Bradyrhizobium japonicum and Photosynthetic Stem-Nodulating Bacteria from Aeschynomene Species Grown in Separated Geographical Regions , 1994, Applied and environmental microbiology.

[18]  P. Brouqui,et al.  Proteinase K-sensitive and filterable phagosome-lysosome fusion inhibiting factor in Afipia felis. , 1993, Microbial pathogenesis.

[19]  D. Raoult,et al.  Antibiotic susceptibilities of Afipia felis in axenic medium and in cells , 1993, Antimicrobial Agents and Chemotherapy.

[20]  F. Grimont,et al.  Genomic heterogeneity of the genus Nitrobacter , 1992 .

[21]  M. Collins,et al.  Evidence for a close genealogical relationship between Afipia (the causal organism of cat scratch disease), Bradyrhizobium japonicum and Blastobacter denitrificans. , 1992, FEMS microbiology letters.

[22]  D. Stephens,et al.  Intracellular growth of Afipia felis, a putative etiologic agent of cat scratch disease , 1992, Infection and immunity.

[23]  T. Devine,et al.  Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp.nov. , 1992 .

[24]  J. Washington,et al.  Isolation of agent associated with cat scratch disease bacillus from pretibial biopsy. , 1991, Diagnostic microbiology and infectious disease.

[25]  C. W. Moss,et al.  Proposal of Afipia gen. nov., with Afipia felis sp. nov. (formerly the cat scratch disease bacillus), Afipia clevelandensis sp. nov. (formerly the Cleveland Clinic Foundation strain), Afipia broomeae sp. nov., and three unnamed genospecies , 1991, Journal of clinical microbiology.

[26]  M. Collins,et al.  Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. , 1991, International journal of systematic bacteriology.

[27]  P. Grimont,et al.  Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. , 1989, Research in microbiology.

[28]  P. Grimont,et al.  Use of DNA reassociation in bacterial classification. , 1988, Canadian journal of microbiology.

[29]  Lawrence G. Wayne International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. , 1988, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[30]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[31]  P. Hirsch,et al.  Blastobacter aggregatus sp.nov., Blastobacter capsulatus sp.nov., and Blastobacter denitrificans sp.nov., new budding bacteria from freshwater habitats , 1985 .

[32]  K. Komagata,et al.  Determination of DNA base composition by reversed-phase high-performance liquid chromatography , 1984 .

[33]  H. Ohta,et al.  Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium , 1983, Antonie van Leeuwenhoek.

[34]  S. Falkow,et al.  Polynucleotide Sequence Divergence Among Strains of Escherichia coli and Closely Related Organisms , 1972, Journal of bacteriology.

[35]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[36]  A. Willems,et al.  Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. , 2001, International journal of systematic and evolutionary microbiology.

[37]  R. Jerris,et al.  Will the real agent of cat-scratch disease please stand up? , 1996, Annual review of microbiology.

[38]  M. Gouy,et al.  Molecular phylogenetic analysis of Nitrobacter spp. , 1994, International journal of systematic bacteriology.

[39]  G. Fox,et al.  How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. , 1992, International journal of systematic bacteriology.

[40]  D. C. Jordan NOTES: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a Genus of Slow-Growing, Root Nodule Bacteria from Leguminous Plants , 1982 .

[41]  D. F. Giménez STAINING RICKETTSIAE IN YOLK-SAC CULTURES. , 1964, Stain technology.