An expert system for predicting the velocity field in narrow open channel flows using self-adaptive extreme learning machines

[1]  Amaury Lendasse,et al.  Bankruptcy prediction using Extreme Learning Machine and financial expertise , 2014, Neurocomputing.

[2]  Bahram Gharabaghi,et al.  Stable alluvial channel design using evolutionary neural networks , 2018, Journal of Hydrology.

[3]  Mahmoud F. Maghrebi,et al.  A simple model for estimation of dimensionless isovel contours in open , 2005 .

[4]  Rafik Absi An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows , 2011 .

[5]  Lianru Gao,et al.  A new kernel method for hyperspectral image feature extraction , 2017, Geo spatial Inf. Sci..

[6]  Maoguo Gong,et al.  Two-phase clustering algorithm with density exploring distance measure , 2018, CAAI Trans. Intell. Technol..

[7]  H. Tabari,et al.  Predicting Spatial Distribution of Snow Water Equivalent Using Multivariate Non-linear Regression and Computational Intelligence Methods , 2011 .

[8]  Zhiping Lin,et al.  Self-Adaptive Evolutionary Extreme Learning Machine , 2012, Neural Processing Letters.

[9]  Vijay P. Singh,et al.  Entropy Theory for Two-Dimensional Velocity Distribution , 2011 .

[10]  Misgana K. Muleta,et al.  Joint Application of Artificial Neural Networks and Evolutionary Algorithms to Watershed Management , 2004 .

[11]  Bahram Gharabaghi,et al.  A methodological approach of predicting threshold channel bank profile by multi-objective evolutionary optimization of ANFIS , 2018 .

[12]  Hossein Bonakdari,et al.  Evaluation of Sediment Transport in Sewer using Artificial Neural Network , 2013 .

[13]  Frédérique Larrarte,et al.  Velocity fields within sewers: An experimental study , 2006 .

[14]  Junke Guo Modified log-wake-law for smooth rectangular open channel flow , 2014 .

[15]  H. Schlichting Boundary Layer Theory , 1955 .

[16]  Bahram Gharabaghi,et al.  An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition , 2018 .

[17]  Amir Hossein Zaji,et al.  Prediction of scour depth around bridge piers using self-adaptive extreme learning machine , 2017 .

[18]  Aytac Guven,et al.  Regional-Specific Numerical Models of Evapotranspiration Using Gene-Expression Programming Interface in Sahel , 2012, Water Resources Management.

[19]  Bhabani Shankar Das,et al.  A numerical solution for depth-averaged velocity distribution in an open channel flow , 2016 .

[20]  Bahram Gharabaghi,et al.  Uncertainty analysis of shear stress estimation in circular channels by Tsallis entropy , 2018, Physica A: Statistical Mechanics and its Applications.

[21]  Hossein Bonakdari,et al.  Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers , 2014, Water Resources Management.

[22]  Danxun Li,et al.  Velocity profile of sediment suspensions and comparison of log-law and wake-law , 2001 .

[23]  Vijay P. Singh,et al.  Estimation of Mean Velocity in Natural Channels Based on Chiu's Velocity Distribution Equation , 2004 .

[24]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Shu-Qing Yang,et al.  Determination of Boundary Shear Stress and Reynolds Shear Stress in Smooth Rectangular Channel Flows , 2004 .

[26]  Walter H. Graf,et al.  TURBULENCE CHARACTERISTICS IN ROUGH UNIFORM OPEN-CHANNEL FLOW , 1994 .

[27]  Bahram Gharabaghi,et al.  Closure to “An integrated framework of extreme learning machines for predicting scour at pile groups in clear water condition” by: I. Ebtehaj, H. Bonakdari, F. Moradi, B. Gharabaghi, Z. Sheikh Khozani , 2019, Coastal Engineering.

[28]  Chao-Lin Chiu,et al.  STRUCTURE OF 3-D FLOW IN RECTANGULAR OPEN CHANNELS , 1986 .

[29]  Hossein Bonakdari,et al.  Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices , 2015 .

[30]  Frédérique Larrarte,et al.  Turbulent velocity profile in fully-developed open channel flows , 2008, Environmental Fluid Mechanics.

[31]  Frédérique Larrarte,et al.  Profil de vitesses turbulent : une nouvelle loi pour les canaux étroits , 2010 .

[32]  Frédérique Larrarte,et al.  Velocity Distribution in Open Channel Flows: Analytical Approach for the Outer Region , 2013 .

[33]  Seyed Mehdi Rezaei,et al.  Compensation of friction and force ripples in the estimation of cutting forces by neural networks , 2018 .

[34]  Bahram Gharabaghi,et al.  Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length , 2018 .

[35]  Kandula V. N. Sarma,et al.  DETAILED STUDY OF BINARY LAW FOR OPEN CHANNELS. TECHNICAL NOTE , 2000 .

[36]  Shu-Qing Yang,et al.  Interactions of boundary shear stress, secondary currents and velocity , 2005 .

[37]  Lucy Bastin,et al.  Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization , 2017, Geo spatial Inf. Sci..

[38]  Hossein Bonakdari,et al.  Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design , 2017, Appl. Math. Comput..

[39]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[40]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[41]  Shuzhi Sam Ge,et al.  Role Playing Learning for Socially Concomitant Mobile Robot Navigation , 2017, CAAI Trans. Intell. Technol..

[42]  Hongming Zhou,et al.  Optimization method based extreme learning machine for classification , 2010, Neurocomputing.

[43]  António H. Cardoso,et al.  Uniform flow in a smooth open channel , 1989 .

[44]  Kishanjit Kumar Khatua,et al.  Prediction of depth-averaged velocity in an open channel flow , 2018, Applied Water Science.

[45]  Antonio Ficarella,et al.  An artificial neural network approach to investigate cavitating flow regime at different temperatures , 2014 .

[46]  Chao-Lin Chiu Entropy and 2-D velocity distribution in open channels , 1988 .

[47]  Nian-Sheng Cheng,et al.  Secondary flows over artificial bed strips , 2005 .

[48]  Tuncer Cebeci,et al.  Analysis of turbulent flows , 2004 .

[49]  S. Tan,et al.  Velocity Distribution and Dip-Phenomenon in Smooth Uniform Open Channel Flows , 2004 .

[50]  Bahram Gharabaghi,et al.  More accurate prediction of the complex velocity field in sewers based on uncertainty analysis using extreme learning machine technique , 2018, ISH Journal of Hydraulic Engineering.

[51]  Fei Wang,et al.  Urban land-use classification by combining high-resolution optical and long-wave infrared images , 2017, Geo spatial Inf. Sci..

[52]  Junke Guo,et al.  Turbulent velocity distribution with dip phenomenon in conic open channels , 2015 .

[53]  Gulay Tezel,et al.  Estimation of the Change in Lake Water Level by Artificial Intelligence Methods , 2014, Water Resources Management.

[54]  Junke Guo,et al.  Modified log-wake law for turbulent flow in smooth pipes , 2003 .

[55]  M. Fiorentino,et al.  Entropy approach for 2D velocity distribution in open-channel flow , 2011 .

[56]  Hossein Bonakdari,et al.  Modeling of velocity fields by the entropy concept in narrow open channels , 2015 .

[57]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[58]  Frédérique Larrarte,et al.  Turbulent velocity profiles : a new law for narrow channels , 2010 .

[59]  Sung-Uk Choi,et al.  Reynolds stress modelling of rectangular open‐channel flow , 2006 .

[60]  Bahram Gharabaghi,et al.  Estimation of the Darcy–Weisbach friction factor for ungauged streams using Gene Expression Programming and Extreme Learning Machines , 2019, Journal of Hydrology.