A Flexible Pinhole Camera Model for Coherent Nonuniform Sampling

The flexible pinhole camera (FPC) allows flexible modulation of the sampling rate over the field of view. The FPC is defined by a viewpoint and a map specifying the sampling locations on the image plane. The map is constructed from known regions of interest with interactive and automatic approaches. The FPC provides inexpensive 3D projection that allows rendering complex datasets quickly, in feed-forward fashion, by projection followed by rasterization. The FPC supports many types of data, including image, height field, geometry, and volume data. The resulting image is a coherent nonuniform sampling (CoNUS) of the dataset that matches the local variation of the dataset's importance. CoNUS images have been successfully implemented for remote visualization, focus-plus-context visualization, and acceleration of expensive rendering effects such as surface geometric detail and specular reflection. A video explaining and demonstrating the FPC is at http://youtu.be/kvFe5XjOPNM.

[1]  Gabriel Taubin,et al.  Space‐Optimized Texture Maps , 2002 .

[2]  Juhyun Lee,et al.  The irregular Z-buffer: Hardware acceleration for irregular data structures , 2005, TOGS.

[3]  Bernard Péroche,et al.  Fast non-linear projections using graphics hardware , 2008, I3D '08.

[4]  Ari Rappoport,et al.  Interactive reflections on curved objects , 1998, SIGGRAPH.

[5]  Patrick Baudisch,et al.  Focus plus context screens: combining display technology with visualization techniques , 2001, UIST '01.

[6]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[7]  Pat Hanrahan,et al.  Shadow silhouette maps , 2003, ACM Trans. Graph..

[8]  Klaus Mueller,et al.  Illustrative Focus+Context Approaches in Interactive Volume Visualization , 2010, Scientific Visualization: Advanced Concepts.

[9]  Cláudio T. Silva,et al.  Interactive rendering of large unstructured grids using dynamic level-of-detail , 2005, VIS 05. IEEE Visualization, 2005..

[10]  Steven G. Parker,et al.  Fast isosurface extraction methods for large image data sets , 2000 .

[11]  Philippe A. Palanque,et al.  Proceedings of the SIGCHI Conference on Human Factors in Computing Systems , 2014, International Conference on Human Factors in Computing Systems.

[12]  Markus H. Gross,et al.  Compression Domain Volume Rendering for Distributed Environments , 1997, Comput. Graph. Forum.

[13]  Klaus Mueller,et al.  The magic volume lens: an interactive focus+context technique for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[14]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1998 .

[15]  M. Sheelagh T. Carpendale,et al.  Distortion viewing techniques for 3-dimensional data , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[16]  Emmanuel Pietriga,et al.  Sigma lenses: focus-context transitions combining space, time and translucence , 2008, CHI.

[17]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[18]  Voicu Popescu,et al.  The Occlusion Camera , 2005, Comput. Graph. Forum.

[19]  Bruce Walter,et al.  Feature-Based Textures , 2004, Rendering Techniques.

[20]  Charles D. Hansen,et al.  Semotus Visum: a flexible remote visualization framework , 2002, IEEE Visualization, 2002. VIS 2002..

[21]  Leonard McMillan,et al.  General Linear Cameras , 2004, ECCV.

[22]  Simon Stegmaier,et al.  A Generic Solution for Hardware-Accelerated Remote Visualization , 2002, VisSym.

[23]  Manuel Menezes de Oliveira Neto,et al.  Relief mapping of non-height-field surface details , 2006, I3D '06.

[24]  Ramana Rao,et al.  The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies , 1996, J. Vis. Lang. Comput..

[25]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[26]  Voicu Popescu,et al.  The General Pinhole Camera: Effective and Efficient Nonuniform Sampling for Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[27]  László Szirmay-Kalos,et al.  Approximate Ray‐Tracing on the GPU with Distance Impostors , 2005, Comput. Graph. Forum.

[28]  Mateu Sbert,et al.  Importance-Driven Focus of Attention , 2006, IEEE Transactions on Visualization and Computer Graphics.