The Optics of Polarization Sensitivity

No doubt it is foolish to assume without proof that organisms have solved a particular sensing problem in the same way that physicists and engineers have. The animal’s sensory requirements and biophysical repertoire may in fact be quite different from the corresponding human conceptual and instrumental systems. Thus visual polarizers in animals unlike instrumental polarizers which may be extremely specialized in their application, are part of quite general photoreceptor systems which ordinarily have also to discriminate intensity, wavelength, movement, images and so on. Consequently their functional design must involve appropriate compromises to maintain optimal sensing of all significant light parameters. Hence the sharing of input channels and the mechanisms of discrimination are of particular importance. Yet the signal parameters and potential optical means of estimating them are undoubtedly the same as for a manmade polarimeter.

[1]  Philip L. Altman,et al.  Biology Data Book , 1964 .

[2]  M. Fuortes,et al.  Visual responses in Limulus. , 1965, Cold Spring Harbor symposia on quantitative biology.

[3]  Simon B. Laughlin,et al.  Receptor Function in the Apposition Eye — An Electrophysiological Approach , 1975 .

[4]  S. R. Shaw,et al.  Sense-cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eyes. , 1969, Vision research.

[5]  W. H. Miller,et al.  Fly colour vision. , 1972, Vision research.

[6]  G. Romhányi,et al.  Optical polarisation indicates linear arrangement of rhodopsin oligosaccharide chain in rod disk membranes of frog retina , 1974, Nature.

[7]  P. Liebman Microspectrophotometry of Photoreceptors , 1972 .

[8]  E. Denton,et al.  The contributions of the orientated photosensitive and other molecules to the absorption of whole retina , 1959, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[9]  Light Absorption in an Idealised Photoreceptor on the Basis of Waveguide Theory , 1975 .

[10]  Allan W. Snyder,et al.  Leaky-ray theory of optical waveguides of circular cross section , 1974 .

[11]  W. A. Shurcliff,et al.  Haidinger’s Brushes and Circularly Polarized Light , 1955 .

[12]  K. Karita,et al.  Discrimination of horizontal and vertical planes of polarized light by the cephalopod retina. , 1966, The Japanese journal of physiology.

[13]  K. Stockhammer Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen , 1959 .

[14]  Joel W. Hedgpeth,et al.  The physiology of Crustacea , 1962 .

[15]  C. Wiersma,et al.  Electrical responses in decapod crustacean visual systems. , 1963, Journal of cellular and comparative physiology.

[16]  K. Kirschfeld,et al.  Waveguide Mode Effects, Birefringence and Dichroism in Fly Photoreceptors , 1975 .

[17]  R. M. Gaze,et al.  TYPES OF VISUAL RESPONSE FROM SINGLE UNITS IN THE OPTIC TECTUM AND OPTIC NERVE OF THE GOLDFISH. , 1964, Quarterly journal of experimental physiology and cognate medical sciences.

[18]  B. Honig,et al.  The structure and spectra of the chromophore of the visual pigments. , 1974, Annual review of biophysics and bioengineering.

[19]  C. Shute,et al.  Haidinger's brushes and predominant orientation of collagen in corneal stroma , 1974, Nature.

[20]  T. Waterman,et al.  Localization of the Violet and Yellow Receptor Cells in the Crayfish Retinula , 1973, The Journal of general physiology.

[21]  Schwab S. Major,et al.  Polarized Light and Optical Measurement , 1972 .

[22]  Karl von Frisch,et al.  Tanzsprache und Orientierung der Bienen , 1965 .

[23]  M. Rockstein The physiology of Insecta , 1964 .

[24]  A. J. Allnutt Optical Aspects of Oceanography , 1975 .

[25]  R. Cone Rotational diffusion of rhodopsin in the visual receptor membrane. , 1972, Nature: New biology.

[26]  R. Menzel Polarisation Sensitivity in Insect Eyes with Fused Rhabdoms , 1975 .

[27]  T. Waterman POLARIZED LIGHT AND ANGLE OF STIMULUS INCIDENCE IN THE COMPOUND EYE OF LIMULUS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[28]  O. Trujillo-Cenóz Some aspects of the structural organization of the intermediate retina of dipterans. , 1965, Journal of ultrastructure research.

[29]  K. Adler,et al.  Spatial Orientation by Salamanders Using Plane-Polarized Light , 1973, Science.

[30]  R. M. Eakin Structure of Invertebrate Photoreceptors , 1972 .

[31]  T. I. Shaw The Circular Dichroism and Optical Rotatory Dispersion of Visual Pigments , 1972 .

[32]  H FERNANDEZ-MORAN,et al.  Fine structure of the light receptors in the compound eyes of insects. , 1958, Experimental cell research.

[33]  A. Laties,et al.  An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors. , 1971, Investigative ophthalmology.

[34]  P. Liebman In situ microspectrophotometric studies on the pigments of single retinal rods. , 1962, Biophysical journal.

[35]  A. Snyder,et al.  Polarisation Sensitivity of Twisted Fused Rhabdoms , 1975 .

[36]  M. F. Moody Evidence for the Intraocular Discrimination of Vertically and Horizontally Polarized Light by Octopus , 1962 .

[37]  A. Snyder How fish detect polarized light. , 1973, Investigative Ophthalmology.

[38]  P. Liebman Birefringence, Dichroism and Rod Outer Segment Structure , 1975 .

[39]  George Wald,et al.  Visual excitation: a chemo-anatomical study , 1962 .

[40]  K. Horch,et al.  Mechanism of Polarized Light Perception , 1966, Science.

[41]  K. J. Muller Photoreceptors in the crayfish compound eye: electrical interactions between cells as related to polarized‐light sensitivity , 1973, The Journal of physiology.

[42]  P. Dill Perception of Polarized Light by Yearling Sockeye Salmon (Oncorhynchus nerka) , 1971 .

[43]  T. Waterman Visual direction finding by fishes , 1972 .

[44]  G. Falk,et al.  Physical Changes Induced by Light in the Rod Outer Segment of Vertebrates , 1972 .

[45]  F. Crescitelli,et al.  The Visual Cells and Visual Pigments of the Vertebrate Eye , 1972 .

[46]  G. Horridge Arthropod receptor optics , 1975 .

[47]  Waterman Th Systems analysis and the visual orientation of animals. , 1967 .

[48]  John Young The anatomy of the nervous system of Octopus vulgaris , 1971 .

[49]  T. Waterman,et al.  Field demonstration of polarotaxis in the fish Zenarchopterus , 1972 .

[50]  C. R. Worthington Structure of photoreceptor membranes. , 1971, Federation proceedings.

[51]  B. Bush,et al.  AFFERENT VISUAL RESPONSES IN THE OPTIC NERVE OF THE CRAB, PODOPHTHALMUS. , 1964, Journal of cellular and comparative physiology.

[52]  S. Laughlin,et al.  Membranes, Dichroism and Receptor Sensitivity , 1975 .

[53]  K. Horch,et al.  VISUAL ORIENTATION AT THE WATER SURFACE BY THE TELEOST ZENARCHOPTERUS , 1972 .

[54]  W. S. Jagger,et al.  Membrane structure changes in rod outer segments associated with rhodopsin bleaching , 1974, Nature.

[55]  K. Kirschfeld,et al.  Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des Vektors linear polarisierten Lichtes , 1972 .

[56]  M. F. Moody,et al.  PHOTORECEPTOR ORGANELLES IN ANIMALS , 1964, Biological reviews of the Cambridge Philosophical Society.

[57]  O. J. Grundler Elektronenmikroskopische Untersuchungen am Auge der Honig biene (Apis mellifica). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien versc hiedenerAugenbereiche und zur Perzeption linear polarisier ten Lichtes , 1974 .

[58]  W. J. Schmidt Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen , 1938 .

[59]  F. Gribakin Perception of Polarised Light in Insects by Filter Mechanism , 1973, Nature.

[60]  Problems of Menotactic Orientation According to the Polarized Light of the Sky , 1975 .

[61]  T. Waterman,et al.  DIRECTIONAL SENSITIVITY OF SINGLE OMMATIDIA IN THE COMPOUND EYE OF LIMULUS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. D. Bernard,et al.  Some aspects of the retinal organization of Sympycnus linetaus Loew (Diptera, Dolichopodidae). , 1972, Journal of ultrastructure research.

[63]  Allan W. Snyder,et al.  Photoreceptor Optics — Theoretical Principles , 1975 .

[64]  T. Waterman,et al.  Polarization Patterns in Submarine Illumination. , 1954, Science.

[65]  S. R. Shaw,et al.  Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. , 1969, Vision research.

[66]  V. Meyer-Rochow Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. , 1974, Journal of insect physiology.

[67]  P. K. Brown Rhodopsin rotates in the visual receptor membrane. , 1972, Nature: New biology.

[68]  Gary D. Bernard,et al.  THE VISUAL SYSTEM OF INSECTS , 1974 .

[69]  C. Groot On the orientation of young sockeye salmon (Oncorhynchus nerka) during their seaward migration out of lakes , 1965 .

[70]  Gundo Boehm,et al.  ÜBER EIN NEUES ENTOPTISCHES PHÄNOMEN IM POLARISIERTEN LICHT. »PERIPHERE« POLARISATIONSBÜSCHEL , 1940 .

[71]  Klaus Schmidt-Koenig,et al.  Animal Orientation and Navigation , 1972 .

[72]  B Commoner,et al.  The Application of the Beer-Lambert Law to Optically Anisotropic Systems. , 1949, Science.

[73]  T. Goldsmith,et al.  The Polarization Sensitivity — Dichroic Absorption Paradox in Arthropod Photoreceptors , 1975 .

[74]  Gilbert D. McCann,et al.  Spectral and Polarization Sensitivity of the Dipteran Visual System , 1972, The Journal of general physiology.

[75]  L. Kruger,et al.  Organization of the visual projection upon the optic tectum of some freshwater fish , 1965, The Journal of comparative neurology.

[76]  H. Langer Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges , 2004, Zeitschrift für Vergleichende Physiologie.

[77]  S. Shaw Polarized Light Responses from Crab Retinula Cells , 1966, Nature.

[78]  H. K. Hartline,et al.  Inhibitory Interaction in the Retina of Limulus , 1972 .

[79]  Doekele G. Stavenga Visual receptor optics : Rhodopsin and pupil in fly retinula cells , 1974 .