A Revised Scheme for the WRF Surface Layer Formulation

This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u * ). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.

[1]  J. Dudhia,et al.  Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model , 2012 .

[2]  J. Wyngaard,et al.  Subfilter-Scale Modelling Using Transport Equations: Large-Eddy Simulation of the Moderately Convective Atmospheric Boundary Layer , 2011 .

[3]  Song-You Hong,et al.  Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99 , 2011 .

[4]  E. Xoplaki,et al.  North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability , 2011, Climate Dynamics.

[5]  J. Qin,et al.  Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length , 2010 .

[6]  D. Lenschow,et al.  An Improved Approach for Parameterizing Surface-Layer Turbulent Transfer Coefficients in Numerical Models , 2010 .

[7]  Z. Sorbjan,et al.  Gradient‐based scales and similarity laws in the stable boundary layer , 2010 .

[8]  J. Montávez,et al.  Quality Assurance of Surface Wind Observations from Automated Weather Stations , 2010 .

[9]  Andrey A. Grachev,et al.  An Evaluation of the Flux–Gradient Relationship in the Stable Boundary Layer , 2010 .

[10]  J. Dudhia,et al.  Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation , 2010 .

[11]  J. Gutiérrez,et al.  Diurnal surface wind variations over complex terrain , 2010 .

[12]  Pedro Ángel Jiménez Muñoz Analysis of surface wind over complex terrain: a dynamical downscaling study with the WRF model , 2009 .

[13]  Ying Zhang,et al.  On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients , 2009 .

[14]  Chang‐Hoi Ho,et al.  Flux‐gradient relationship of water vapor in the surface layer obtained from CASES‐99 experiment , 2009 .

[15]  J. Montávez,et al.  Climatology of wind patterns in the northeast of the Iberian Peninsula , 2009 .

[16]  L. Leung,et al.  Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States , 2008 .

[17]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[18]  J. Montávez,et al.  Surface Wind Regionalization in Complex Terrain , 2008 .

[19]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[20]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[21]  W. Brutsaert,et al.  Flux-profile Relationships for Wind Speed and Temperature in the Stable Atmospheric Boundary Layer , 2005 .

[22]  Georgiy L. Stenchikov,et al.  Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations , 2004 .

[23]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[24]  Joan Cuxart,et al.  CASES-99: a comprehensive investigation of the stable nocturnal boundary layer , 2002 .

[25]  D. Fitzjarrald,et al.  The Early Evening Surface-Layer Transition: Temporal and Spatial Variability , 2001 .

[26]  D. Wilson,et al.  An Alternative Function For The Wind And Temperature Gradients In Unstable Surface Layers , 2001 .

[27]  Christopher W. Fairall,et al.  Convective Profile Constants Revisited , 2000 .

[28]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[29]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[30]  Jielun Sun,et al.  The Subgrid Velocity Scale in the Bulk Aerodynamic Relationship for Spatially Averaged Scalar Fluxes , 1995 .

[31]  A. Beljaars The parametrization of surface fluxes in large-scale models under free convection , 1995 .

[32]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[33]  Wilfried Brutsaert,et al.  Stability correction functions for the mean wind speed and temperature in the unstable surface layer , 1992 .

[34]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[35]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[36]  A. Holtslag,et al.  Applied Modeling of the Nighttime Surface Energy Balance over Land , 1988 .

[37]  S. P. S. Arya,et al.  Introduction to micrometeorology , 1988 .

[38]  Albert A. M. Holtslag,et al.  Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications , 1985 .

[39]  Da‐Lin Zhang,et al.  A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data , 1982 .

[40]  E. F. Bradley,et al.  An alternative analysis of flux-gradient relationships at the 1976 ITCE , 1982 .

[41]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[42]  Frederick E. Boland,et al.  Analysis of Urban-Rural Canopy Using a Surface Heat Flux/Temperature Model , 1978 .

[43]  B. Hicks,et al.  Wind profile relationships from the ‘wangara’ experiment , 1976 .

[44]  A. Dyer A review of flux-profile relationships , 1974 .

[45]  Y. Izumi Kansas 1968 Field Program Data Report. , 1971 .

[46]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[47]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[48]  E. K. Webb Profile relationships: The log‐linear range, and extension to strong stability , 1970 .

[49]  A. Dyer The turbulent transport of heat and water vapour in an unstable atmosphere , 1967 .

[50]  Hans A. Panofsky,et al.  Determination of stress from wind and temperature measurements , 1963 .