Tetrahedral mesh deformation with positional constraints

Abstract Deforming a tetrahedral mesh to conform to geometry modifications is a useful process in applications. This paper presents a method for tetrahedral mesh deformation driven by displacement of partial vertices of the mesh. The basic techniques behind the method are radial basis function (RBF)-based interpolation and adaptive mesh refinement. The method is realized by a warping process that transforms the mesh via iterative RBF-based interpolation to avoid the inversion of tetrahedra. Adaptive refinement by locally bisecting potentially inverted tetrahedra is also introduced to assure sufficiently large warping stepsizes. The refinement is performed on both the input mesh and the warped meshes concurrently to maintain the consistency of the topology. As a result, the method can effectively produce an inversion-free and topology compatible deformation mesh that satisfies hard positional constraints. Experimental results show the effectiveness of the method.

[1]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[2]  Andreas K. Michler,et al.  Aircraft control surface deflection using RBF‐based mesh deformation , 2011 .

[3]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[4]  Wenjing Zhang,et al.  Inversion Free and Topology Compatible Tetrahedral Mesh Warping Driven by Boundary Surface Deformation , 2013, 2013 International Conference on Computer-Aided Design and Computer Graphics.

[5]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[6]  Orcun Goksel,et al.  Image-Based Variational Meshing , 2011, IEEE Transactions on Medical Imaging.

[7]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[8]  Yao Jin,et al.  Remeshing‐assisted Optimization for Locally Injective Mappings , 2014, Comput. Graph. Forum.

[9]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[10]  Suzanne M. Shontz,et al.  A Mesh Warping Algorithm Based on Weighted Laplacian Smoothing , 2003, IMR.

[11]  Stefan Menzel,et al.  High Quality Mesh Morphing Using Triharmonic Radial Basis Functions , 2012, IMR.

[12]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[13]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[14]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[15]  Humberto Rocha,et al.  On the selection of the most adequate radial basis function , 2009 .

[16]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[17]  Tong-Yee Lee,et al.  An RBF-Based Reparameterization Method for Constrained Texture Mapping , 2012, IEEE Transactions on Visualization and Computer Graphics.

[18]  Jincai Chang,et al.  An Adaptive Method for Choosing Center Sets of RBF Interpolation , 2011, J. Comput..

[19]  Matthew L. Staten,et al.  A Comparison of Mesh Morphing Methods for 3D Shape Optimization , 2011, IMR.

[20]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[21]  Suzanne M. Shontz,et al.  Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes , 2004, cs/0410045.

[22]  Suzanne M. Shontz,et al.  A log-barrier method for mesh quality improvement and untangling , 2012, Engineering with Computers.

[23]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[24]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[25]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[26]  Nilanjan Mukherjee,et al.  A Mesh Morphing Technique For Geometrically Dissimilar Tessellated Surfaces , 2007, IMR.

[27]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[28]  Tong-Yee Lee,et al.  Foldover-free shape deformation for biomedicine , 2014, J. Biomed. Informatics.

[29]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[30]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[31]  R. Schaback,et al.  Characterization and construction of radial basis functions , 2001 .

[32]  Patrick M. Knupp,et al.  Updating meshes on deforming domains : An application of the target-matrix paradigm , 2007 .

[33]  David Levin,et al.  Shape Deformation via Interior RBF , 2014, IEEE Transactions on Visualization and Computer Graphics.

[34]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[35]  Brian T. Helenbrook,et al.  Mesh deformation using the biharmonic operator , 2003 .

[36]  Jian Xie,et al.  Foldover-Free Mesh Warping for Constrained Texture Mapping , 2015, IEEE Transactions on Visualization and Computer Graphics.

[37]  David P. Schmidt,et al.  Adaptive tetrahedral meshing in free-surface flow , 2005 .

[38]  Teseo Schneider,et al.  Smooth bijective maps between arbitrary planar polygons , 2015, Comput. Aided Geom. Des..

[39]  Franco Dassi,et al.  Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction , 2017, Comput. Aided Des..

[40]  Nadia Magnenat-Thalmann,et al.  Real‐Time Subspace Integration for Example‐Based Elastic Material , 2015, Comput. Graph. Forum.