Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries

Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm−1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectors that provide high value to advancing solid state batteries are outlined and discussed.

[1]  Debasish Sarkar,et al.  Ceramic Processing , 2019 .

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[4]  Biyi Xu,et al.  Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression , 2017 .

[5]  Kevin N. Wood,et al.  Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes , 2017 .

[6]  Zengmei Wang,et al.  Ionic conductivities of lithium borohydride-lithium nitride composites , 2017 .

[7]  Eongyu Yi,et al.  Key parameters governing the densification of cubic-Li 7 La 3 Zr 2 O 12 Li + conductors , 2017 .

[8]  B. Roling,et al.  Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes , 2017 .

[9]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[10]  Kun Fu,et al.  Garnet Solid Electrolyte Protected Li-Metal Batteries. , 2017, ACS applied materials & interfaces.

[11]  K. Reuter,et al.  Li+ Defects in a Solid-State Li Ion Battery: Theoretical Insights with a Li3OCl Electrolyte , 2017 .

[12]  M. Lanagan,et al.  Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte , 2017 .

[13]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[14]  Yet-Ming Chiang,et al.  Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte , 2017 .

[15]  Kevin N. Wood,et al.  Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12 , 2017 .

[16]  Young Jin Nam,et al.  Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries. , 2017, Nano letters.

[17]  T. Uchikoshi,et al.  Colloidal processing of Li2S-P2S5 films fabricated via electrophoretic deposition methods and their characterization as a solid electrolyte for all solid state lithium ion batteries , 2017 .

[18]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[19]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[20]  K. Uosaki,et al.  Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries , 2017 .

[21]  N. Dudney Evolution of the lithium morphology from cycling of thin film solid state batteries , 2017, Journal of Electroceramics.

[22]  Yang Shen,et al.  Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. , 2017, ACS applied materials & interfaces.

[23]  Yizhou Zhu,et al.  Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode , 2017, Advanced science.

[24]  Y. Iriyama,et al.  Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li 7 La 3 Zr 2 O 12 , 2017 .

[25]  R. Raj,et al.  Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries , 2017 .

[26]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[27]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[28]  W. Craig Carter,et al.  The Effect of Stress on Battery-Electrode Capacity , 2017 .

[29]  T. Thompson,et al.  Electrical, mechanical and chemical behavior of Li1.2Zr1.9Sr0.1(PO4)3 , 2017 .

[30]  Donald J. Siegel,et al.  Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12 , 2017 .

[31]  Lucienne Buannic,et al.  Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. , 2017, ACS applied materials & interfaces.

[32]  John B. Goodenough,et al.  Alternative strategy for a safe rechargeable battery , 2017 .

[33]  Z. Wen,et al.  Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte , 2017 .

[34]  J. Haruyama,et al.  Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. , 2017, ACS applied materials & interfaces.

[35]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[36]  Takao Inoue,et al.  Are All-Solid-State Lithium-Ion Batteries Really Safe?-Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. , 2017, ACS applied materials & interfaces.

[37]  S. Wunder,et al.  Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries , 2017 .

[38]  Mickael Dollé,et al.  Effect of composite electrode thickness on the electrochemical performances of all-solid-state li-ion batteries , 2017, Journal of Electroceramics.

[39]  H. Yamada,et al.  Contact between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention , 2017 .

[40]  H. Munakata,et al.  Thermal Stability of Various Cathode Materials against Li 6.25 Al 0.25 La 3 Zr 2 O 12 Electrolyte , 2017 .

[41]  H. Hahn,et al.  Garnet-Type Li7La3Zr2O12Solid Electrolyte Thin Films Grown by CO2-Laser Assisted CVD for All-Solid-State Batteries , 2017 .

[42]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[43]  Xiaoxiong Xu,et al.  Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells , 2017, Ionics.

[44]  Xingang Liu,et al.  Preparation of NASICON-Type Nanosized Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 by Evaporation-Induced Self-Assembly for Lithium-Ion Battery , 2016, Nanoscale Research Letters.

[45]  Lilu Liu,et al.  Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. , 2016, ACS applied materials & interfaces.

[46]  Ashok K. Vijh,et al.  Recent progress in sulfide-based solid electrolytes for Li-ion batteries , 2016 .

[47]  A. Yaroslavtsev Solid electrolytes: main prospects of research and development , 2016 .

[48]  J. Rupp,et al.  Interface‐Engineered All‐Solid‐State Li‐Ion Batteries Based on Garnet‐Type Fast Li+ Conductors , 2016 .

[49]  Q. Ma,et al.  About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. , 2016, ACS applied materials & interfaces.

[50]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[51]  Kevin L. Gering,et al.  Enhancing Li-Ion Battery Safety by Early Detection of Nascent Internal Shorts , 2016 .

[52]  J. Sakamoto,et al.  In-situ, non-destructive acoustic characterization of solid state electrolyte cells , 2016 .

[53]  Sebastian Wenzel,et al.  In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup , 2016 .

[54]  Eongyu Yi,et al.  Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO) , 2016 .

[55]  J. Glenneberg,et al.  Microstructure and temperature dependent lithium ion transport of ceramic–polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li7La3Zr2O12 , 2016 .

[56]  Joonhee Kang,et al.  First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries. , 2016, The journal of physical chemistry letters.

[57]  Isabel M. Kloumann,et al.  Block models and personalized PageRank , 2016, Proceedings of the National Academy of Sciences.

[58]  S. Pannala,et al.  Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries , 2016, Scientific Reports.

[59]  Seokgwang Doo,et al.  The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics , 2016 .

[60]  Takanobu Yamada,et al.  The Electrochemical Characteristics and Applicability of an Amorphous Sulfide-Based Solid Ion Conductor for the Next-Generation Solid-State Lithium Secondary Batteries , 2016, Front. Energy Res..

[61]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[62]  Chih‐Long Tsai,et al.  Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries , 2016 .

[63]  Seung M. Oh,et al.  Solution‐Processable Glass LiI‐Li4SnS4 Superionic Conductors for All‐Solid‐State Li‐Ion Batteries , 2016, Advanced materials.

[64]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[65]  Biyi Xu,et al.  Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles. , 2016, ACS applied materials & interfaces.

[66]  X. Lü,et al.  Antiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries , 2016, Advanced science.

[67]  Dongwook Shin,et al.  Enhanced electrochemical performance of surface modified LiCoO2 for all-solid-state lithium batteries , 2016 .

[68]  A. Hayashi,et al.  5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte , 2016 .

[69]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[70]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[71]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[72]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[73]  Y. Iriyama,et al.  Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces , 2016 .

[74]  Ning Zhao,et al.  All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes , 2015 .

[75]  Karsten Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[76]  B. McCloskey,et al.  Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.

[77]  Hui Wang,et al.  High‐Performance Lithium Solid‐State Batteries Operating at Elevated Temperature , 2015 .

[78]  Dong‐Won Kim,et al.  Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety , 2015 .

[79]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[80]  N. Imanishi,et al.  Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12 , 2015 .

[81]  A. Pearse,et al.  Atomic Layer Deposition of the Solid Electrolyte LiPON , 2015 .

[82]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[83]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[84]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[85]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[86]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[87]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[88]  Kevin G. Gallagher,et al.  Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery , 2015 .

[89]  Steve LeVine 23. The Mysterious Story of the Battery Startup That Promised GM a 200-Mile Electric Car , 2014 .

[90]  B. R. Shin,et al.  Comparative Study of TiS2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li3PS4 and Li10GeP2S12 Solid Electrolytes , 2014 .

[91]  A. Hayashi,et al.  Sulfide Glass‐Ceramic Electrolytes for All‐Solid‐State Lithium and Sodium Batteries , 2014 .

[92]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[93]  Lei Cheng,et al.  The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[94]  Yang Shen,et al.  Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries , 2014 .

[95]  D. Sholl,et al.  First-Principles Study of Chemical Stability of the Lithium Oxide Garnets Li7La3M2O12 (M = Zr, Sn, or Hf) , 2014 .

[96]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[97]  S. Ramanathan,et al.  Performance of solid oxide fuel cells approaching the two-dimensional limit , 2014 .

[98]  Y. Iriyama,et al.  In-Situ Electron Microscope Observations of Electrochemical Li Deposition/Dissolution with a LiPON Electrolyte , 2014 .

[99]  M. Braga,et al.  Novel Li3ClO based glasses with superionic properties for lithium batteries , 2014 .

[100]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[101]  Seokgwang Doo,et al.  A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte , 2014 .

[102]  S. Ramanathan,et al.  Erratum to: Complex oxide nanomembranes for energy conversion and storage: A review , 2014 .

[103]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[104]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[105]  N. Dudney,et al.  Interface Limited Lithium Transport in Solid-State Batteries. , 2014, The journal of physical chemistry letters.

[106]  P. Norby,et al.  The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery , 2014 .

[107]  M. Lanagan,et al.  Lithium Thiophosphate Glasses and Glass–Ceramics as Solid Electrolytes: Processing, Microstructure, and Properties , 2013 .

[108]  A. Hayashi,et al.  Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .

[109]  J. Sakamoto,et al.  Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12 , 2013, Nanotechnology.

[110]  Shogo Komagata,et al.  All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing , 2013 .

[111]  M. Hirayama,et al.  Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. , 2013, Dalton transactions.

[112]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[113]  A. Hayashi,et al.  All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass—ceramic as solid electrolytes , 2013 .

[114]  A. Hayashi,et al.  Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles , 2013 .

[115]  J. Sakamoto,et al.  A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ionconductors , 2013 .

[116]  K. Takada,et al.  All-solid-state lithium battery with LiBH4 solid electrolyte , 2013 .

[117]  Fuqiang Huang,et al.  Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method , 2013 .

[118]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[119]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[120]  N. Machida,et al.  Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials , 2012 .

[121]  R. G. Downing,et al.  Discovery of lithium in copper current collectors used in batteries , 2012 .

[122]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[123]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[124]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[125]  J. Sakamoto,et al.  Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet , 2012, Journal of Materials Science.

[126]  Tetsuro Kobayashi,et al.  Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte , 2012 .

[127]  D. Stöver,et al.  Tape Casting as a Multi Purpose Shaping Technology for Different Applications in Energy Issues , 2012 .

[128]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[129]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[130]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[131]  John Newman,et al.  Lithium Redistribution in Lithium-Metal Batteries , 2011 .

[132]  K. Takada,et al.  High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte , 2011 .

[133]  A. Hayashi,et al.  Crystallization Process for Superionic Li7P3S11 Glass–Ceramic Electrolytes , 2011 .

[134]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[135]  S. Orimo,et al.  Lithium Fast‐Ionic Conduction in Complex Hydrides: Review and Prospects , 2011 .

[136]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[137]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[138]  Hirokazu Kitaura,et al.  Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes , 2011 .

[139]  Atsushi Sakuda,et al.  Preparation of Highly Lithium‐Ion Conductive 80Li2S·20P2S5 Thin‐Film Electrolytes Using Pulsed Laser Deposition , 2010 .

[140]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[141]  A. Yamada,et al.  All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON , 2009 .

[142]  G. Schatz The journal of physical chemistry letters , 2009 .

[143]  S. Orimo,et al.  Synthesis and partial dehydrogenation of the impregnated lithium borohydride, LiBH4 , 2009 .

[144]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[145]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[146]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[147]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[148]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[149]  Andrew F. Burke,et al.  Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles , 2007, Proceedings of the IEEE.

[150]  B. Fultz,et al.  XRD evidence of macroscopic composition inhomogeneities in the graphite–lithium electrode , 2007 .

[151]  Fuminori Mizuno,et al.  High lithium ion conducting glass-ceramics in the system Li2S–P2S5 , 2006 .

[152]  Andreas Züttel,et al.  Dehydriding and rehydriding reactions of LiBH4 , 2005 .

[153]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[154]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[155]  T. Minami,et al.  Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling , 2004 .

[156]  Junya Kano,et al.  Scale-up method of planetary ball mill , 2004 .

[157]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[158]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[159]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[160]  T. Minami,et al.  Mechanochemical synthesis of high lithium ion conducting materials in the system Li3N-SiS2 , 2002 .

[161]  Raymond J. Gorte,et al.  Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid‐Oxide Fuel Cell , 2000 .

[162]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[163]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[164]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[165]  R. Armstrong,et al.  The double layer structure at the metal-solid electrolyte interface , 1997 .

[166]  Yet-Ming Chiang,et al.  Physical ceramics : principles for ceramic science and engineering / Yet-Ming Chiang, Dunbar P. Birnie, W. David Kingery , 1996 .

[167]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[168]  S. Kondo,et al.  Rechargeable solid state battery with lithium conductive glass, Li3PO4Li2SSiS2 , 1994 .

[169]  S. Kondo,et al.  Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4Li2SSiS2 , 1994 .

[170]  S. Kondo,et al.  Electrochemical behaviors of Li+ ion conductor, Li3PO4-Li2S-SiS2 , 1993 .

[171]  S. Kondo,et al.  New lithium ion conductors based on Li2S-SiS2 system , 1992 .

[172]  S. D. Jones,et al.  A thin film solid state microbattery , 1992 .

[173]  E. Antoini,et al.  Sintering of LixMi1−xO solid solutions at 1200°C , 1992 .

[174]  R. Shimizu,et al.  Forces generated by anode growth in cylindrical Li/MoS2 cells , 1991 .

[175]  J. Kennedy,et al.  Improved stability for the SiS2-P2S5-Li2S-LiI glass system , 1988 .

[176]  S. Kikkawa,et al.  Preparation of lithium silicon nitrides and their lithium ion conductivity , 1987 .

[177]  J. Akridge,et al.  Solid state batteries using vitreous solid electrolytes , 1986 .

[178]  S. Skaarup,et al.  Discharge of solid state Li3N + TiS2 composite electrodes , 1986 .

[179]  Chenming Hu,et al.  Electrical breakdown in thin gate and tunneling oxides , 1985, IEEE Transactions on Electron Devices.

[180]  S. Kawai,et al.  Synthesis and ionic conductivity of CuxLi3−xN , 1984 .

[181]  J. B. Clark,et al.  Sintering of PZT Ceramics: I, Atmosphere Control , 1983 .

[182]  T. Jow,et al.  Interface Between Solid Electrode and Solid Electrolyte—A Study of the Li / LiI ( Al2 O 3 ) Solid‐Electrolyte System , 1983 .

[183]  R. Bittihn Self discharge of Li3N based all solid state cells , 1983 .

[184]  W. Weppner,et al.  Fast ionic lithium conduction in solid lithium nitride chloride , 1979 .

[185]  H. Schulz,et al.  Defect structure of the ionic conductor lithium nitride (Li3N) , 1979 .

[186]  B. Boukamp,et al.  Fast ionic conductivity in lithium nitride , 1978 .

[187]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[188]  G. K. Johnson,et al.  Lithium nitride (Li3N): standard enthalpy of formation by solution calorimetry , 1975 .

[189]  R. Armstrong,et al.  The breakdown of β-alumina ceramic electrolyte , 1974 .

[190]  H. H. Clarence Zener,et al.  A theory of the electrical breakdown of solid dielectrics , 1934 .