A Robust Localization Algorithm for Mobile Sensors Using Belief Functions

One of the main objectives of localization algorithms is to compute accurate estimates of sensor positions. This task is usually performed using measurements exchanged with neighboring sensors. However, when erroneous measurements occur, the localization process may yield wrong estimates, which leads to unreliable information for location-based applications. This paper proposes a robust localization technique that works efficiently, even under unreliable measurements assumptions. The proposed method uses belief function theory to estimate sensors locations. Assuming that the reliability of sensors measurements is known, the method combines all the available information to make a final decision about the positions. Each measurement is then used to define a belief function based on the reliability information. Experiments with simulated data demonstrate the effectiveness of this approach compared with state-of-the-art methods using different combination rules.

[1]  P.K. Varshney,et al.  Channel-aware distributed detection in wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[2]  A. El-Rabbany Introduction to GPS: The Global Positioning System , 2002 .

[3]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[4]  Ronald R. Yager Cumulative distribution functions from Dempster-Shafer belief structures , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Fernando J. Velez,et al.  Applications of Wireless Sensor Networks , 2007, World Congress on Engineering.

[6]  Bernhard Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .

[7]  B. Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .

[8]  Hojung Cha,et al.  Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks , 2007, 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[9]  P. Smets,et al.  Target identification using belief functions and implication rules , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[10]  David Evans,et al.  Localization for mobile sensor networks , 2004, MobiCom '04.

[11]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions , 2010, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[12]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[13]  Deborah Estrin,et al.  SELF-ORGANIZING DISTRIBUTED COLLABORATIVE SENSOR NETWORKS , 2005 .

[14]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[15]  Hong Xu,et al.  Transferable belief model for decision making in the valuation-based systems , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[16]  John Heidemann,et al.  Workplace Applications of Sensor Networks , 2004 .

[17]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[18]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[19]  Hichem Snoussi,et al.  Localisation par intervalles basée sur les ancres et les non-ancres dans les réseaux de capteurs mobiles , 2009 .

[20]  Arthur P. Dempster,et al.  Classic Works on the Dempster-Shafer Theory of Belief Functions (Studies in Fuzziness and Soft Computing) , 2007 .

[21]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[22]  Xiaoyan Hong,et al.  A group mobility model for ad hoc wireless networks , 1999, MSWiM '99.

[23]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[24]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Thierry Denoeux,et al.  Analysis of evidence-theoretic decision rules for pattern classification , 1997, Pattern Recognit..

[27]  Adam Czubak,et al.  On Applications of Wireless Sensor Networks , 2009 .

[28]  Koen Langendoen,et al.  Monte Carlo localization for mobile wireless sensor networks , 2008, Ad Hoc Networks.

[29]  P. Vannoorenberghe,et al.  Un état de l'art sur les fonctions de croyance appliquées au traitement de l'information , 2003 .

[30]  Z. Nadir,et al.  Pathloss Determination Using Okumura-Hata Model And Spline Interpolation For Missing Data For Oman , 2008 .

[31]  Glenn Shafer,et al.  Readings in Uncertain Reasoning , 1990 .

[32]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[33]  N. Xu A Survey of Sensor Network Applications , 2002 .

[34]  Feng Zhao,et al.  Collaborative signal and information processing in microsensor networks , 2002, IEEE Signal Processing Magazine.

[35]  Andreas Willig,et al.  A short survey of wireless sensor networks , 2003 .

[36]  Arturas Medeisis,et al.  On the use of the universal Okumura-Hata propagation prediction model in rural areas , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[37]  Hichem Snoussi,et al.  Anchor-Based Localization via Interval Analysis for Mobile Ad-Hoc Sensor Networks , 2009, IEEE Transactions on Signal Processing.

[38]  Deborah Estrin,et al.  Guest Editorial Self-Organizing Distributed Collaborative Sensor Networks , 2005 .

[39]  Hichem Snoussi,et al.  Guaranteed Boxed Localization in MANETs by Interval Analysis and Constraints Propagation Techniques , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[40]  Holger Karl,et al.  Using energy where it counts: protecting important messages in the link layer , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[41]  M. Moges,et al.  Wireless sensor networks: scheduling for measurement and data reporting , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[42]  Thierry Denoeux,et al.  Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..

[43]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.