Active, Foveated, Uncalibrated Stereovision

Biological vision systems have inspired and will continue to inspire the development of computer vision systems. One biological tendency that has never been exploited is the symbiotic relationship between foveation and uncalibrated active, binocular vision systems. The primary goal of any binocular vision system is the correspondence of the two retinal images. For calibrated binocular rigs the search for corresponding points can be restricted to epipolar lines. In an uncalibrated system the precise geometry is unknown. However, the set of possible geometries can be restricted to some reasonable range; and consequently, the search for matching points can be confined to regions delineated by the union of all possible epipolar lines over all possible geometries. We call these regions epipolar spaces. The accuracy and complexity of any correspondence algorithm is directly proportional to the size of these epipolar spaces. Consequently, the introduction of a spatially variant foveation strategy that reduces the average area per epipolar space is highly desirable. This paper provides a set of sampling theorems that offer a path for designing foveation strategies that are optimal with respect to average epipolar area.

[1]  Marios S. Pattichis,et al.  Foveated video compression with optimal rate control , 2001, IEEE Trans. Image Process..

[2]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[3]  Hermann Wagner,et al.  Stereoscopic depth perception in the owl , 1998, Neuroreport.

[4]  Gregory D. Hager,et al.  What Tasks can be Performed with an Uncalibrated Stereo Vision System? , 1999, International Journal of Computer Vision.

[5]  E. Schwartz,et al.  On the mathematical structure of the visuotopic mapping of macaque striate cortex. , 1985, Science.

[6]  U. Dräger,et al.  Origins of crossed and uncrossed retinal projections in pigmented and albino mice , 1980, The Journal of comparative neurology.

[7]  Li Feng Disparity Estimation Based on Frequency Domain , 1999 .

[8]  Tomaso Poggio,et al.  Cooperative computation of stereo disparity , 1988 .

[9]  E. W. Bough Stereoscopic Vision in the Macaque Monkey: a Behavioural Demonstration , 1970, Nature.

[10]  Scott B. Stevenson,et al.  Human stereo matching is not restricted to epipolar lines , 1997, Vision Research.

[11]  C. Blakemore The range and scope of binocular depth discrimination in man , 1970, The Journal of physiology.

[12]  J. Stone,et al.  The area centralis of the retina in the cat and other mammals: Focal point for function and development of the visual system , 1984, Neuroscience.

[13]  Yehezkel Yeshurun,et al.  Cortical hypercolumn size determines stereo fusion limits , 1999, Biological Cybernetics.

[14]  F A Davis,et al.  The Anatomy and Histology of the Eye and Orbit of the Rabbit. , 1929, Transactions of the American Ophthalmological Society.

[15]  Jie Wei,et al.  Efficient disparity-based gaze control with foveate wavelet transform , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[16]  T. Poggio,et al.  Vertical image registration in stereopsis , 1984, Vision Research.

[17]  Terry Bossomaier,et al.  Optical image quality and the cone mosaic. , 1986, Science.

[18]  Wei-Song Lin,et al.  Calibration of an active binocular head , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[19]  Alan C. Bovik,et al.  FOVEA: a foveated vergent active stereo vision system for dynamic three-dimensional scene recovery , 1998, IEEE Trans. Robotics Autom..

[20]  Jake K. Aggarwal,et al.  Depth estimation using stereo fish-eye lenses , 1994, Proceedings of 1st International Conference on Image Processing.

[21]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[22]  Zhou Wang,et al.  Embedded foveation image coding , 2001, IEEE Trans. Image Process..

[23]  K N OGLE,et al.  On stereoscopic depth perception. , 1954, Journal of experimental psychology.

[24]  R B Tootell,et al.  On the mathematical structure of the visuotopic mapping of macaque striate cortex. , 1985, Science.

[25]  Wilson S. Geisler,et al.  Real-time foveated multiresolution system for low-bandwidth video communication , 1998, Electronic Imaging.

[26]  J. Pettigrew,et al.  Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba. , 1989, Brain, behavior and evolution.

[27]  Ashraf Elnagar Optimal error discretization under depth and range constraints , 1998, Pattern Recognit. Lett..

[28]  Anup Basu Optimal discretization for stereo reconstruction , 1992, Pattern Recognit. Lett..

[29]  Giulio Sandini,et al.  Active Tracking Strategy for Monocular Depth Inference over Multiple Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Qin-sheng Chen,et al.  Foveal-view stereopsis using symmetric phase-only matched filtering , 1994, Defense, Security, and Sensing.

[31]  Douglas B Tweed,et al.  Influence of eye position on stereo matching , 2003, Strabismus.

[32]  E. Schwartz A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis , 1980, Biological Cybernetics.

[33]  Yehoshua Y. Zeevi,et al.  Nonuniform sampling and antialiasing in image representation , 1993, IEEE Trans. Signal Process..

[34]  Callum Ross,et al.  Adaptive explanation for the origins of the anthropoidea (primates) , 1996, American journal of primatology.

[35]  Carl F. R. Weiman Binocular stereo via log-polar retinas , 1995, Defense, Security, and Sensing.

[36]  John K. Tsotsos,et al.  Techniques for disparity measurement , 1991, CVGIP Image Underst..

[37]  J. Douglas Crawford,et al.  The motor side of depth vision , 2001, Nature.

[38]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers , 1975 .

[39]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[40]  Alan C. Bovik,et al.  Epipolar Spaces and Optimal Sampling Strategies , 2007, 2007 IEEE International Conference on Image Processing.

[41]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[42]  Franco Lepore,et al.  Stereopsis in the cat: Behavioral demonstration and underlying mechanisms , 1991, Neuropsychologia.

[43]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[44]  R. Fox,et al.  Stereopsis in the falcon. , 1977, Science.

[45]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[46]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[47]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[48]  Alan C. Bovik,et al.  Epipolar Spaces for Active Binocular Vision Systems , 2007, 2007 IEEE International Conference on Image Processing.

[49]  Alan C. Bovik,et al.  Nonlinearities in Stereoscopic Phase-Differencing , 2008, IEEE Transactions on Image Processing.

[50]  Konrad Schindler,et al.  The epipolar geometry of the log-polar image plane , 2004, ICPR 2004.

[51]  VEIJO VIRSU,et al.  Cortical Magnification, Scale Invariance and Visual Ecology , 1996, Vision Research.

[52]  M. Banks,et al.  Perceiving heading with different retinal regions and types of optic flow , 1993, Perception & psychophysics.

[53]  M K Kaiser,et al.  Time-to-passage judgments in nonconstant optical flow fields , 1995, Perception & psychophysics.

[54]  K. Fite,et al.  A comparative study of deep avian foveas. , 1975, Brain, behavior and evolution.

[55]  O. D. Faugeras,et al.  Camera Self-Calibration: Theory and Experiments , 1992, ECCV.

[56]  T. Sanger,et al.  Stereo disparity computation using Gabor filters , 1988, Biological Cybernetics.

[57]  Giulio Sandini,et al.  Disparity Estimation on Log-Polar Images and Vergence Control , 2001, Comput. Vis. Image Underst..

[58]  M. Tistarelli,et al.  Direct estimation of time-to-impact from optical flow , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[59]  Colin Blakemore,et al.  Regional specialization in the golden hamster's retina , 1976, The Journal of comparative neurology.

[60]  Ian P. Howard,et al.  Binocular Vision and Stereopsis , 1996 .

[61]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[62]  S. Easter,et al.  Pursuit eye movements in goldfish (Carassius auratus). , 1972, Vision research.

[63]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.