Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems

Abstract We present several versions of Regularized Combined Field Integral Equation (CFIER) formulations for the solution of three dimensional frequency domain electromagnetic scattering problems with Perfectly Electric Conducting (PEC) boundary conditions. Just as in the Combined Field Integral Equations (CFIE), we seek the scattered fields in the form of a combined magnetic and electric dipole layer potentials that involves a composition of the latter type of boundary layers with regularizing operators. The regularizing operators are of two types: (1) modified versions of electric field integral operators with complex wavenumbers, and (2) principal symbols of those operators in the sense of pseudodifferential operators. We show that the boundary integral operators that enter these CFIER formulations are Fredholm of the second kind, and invertible with bounded inverses in the classical trace spaces of electromagnetic scattering problems. We present a spectral analysis of CFIER operators with regularizing operators that have purely imaginary wavenumbers for spherical geometries—we refer to these operators as Calderon–Ikawa CFIER. Under certain assumptions on the coupling constants and the absolute values of the imaginary wavenumbers of the regularizing operators, we show that the ensuing Calderon–Ikawa CFIER operators are coercive for spherical geometries. These properties allow us to derive wavenumber explicit bounds on the condition numbers of Calderon–Ikawa CFIER operators. When regularizing operators with complex wavenumbers with non-zero real parts are used—we refer to these operators as Calderon-Complex CFIER, we show numerical evidence that those complex wavenumbers can be selected in a manner that leads to CFIER formulations whose condition numbers can be bounded independently of frequency for spherical geometries. In addition, the Calderon-Complex CFIER operators possess excellent spectral properties in the high-frequency regime for both convex and non-convex scatterers. We provide numerical evidence that our solvers based on fast, high-order Nystrom discretization of these equations converge in very small numbers of GMRES iterations, and the iteration counts are virtually independent of frequency for several smooth scatterers with slowly varying curvatures.

[1]  Lehel Banjai,et al.  A Refined Galerkin Error and Stability Analysis for Highly Indefinite Variational Problems , 2007, SIAM J. Numer. Anal..

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  A. Calderón,et al.  The Multipole Expansion of Radiation Fields , 1954 .

[5]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[6]  Jean-Claude Nédélec,et al.  Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique , 2000 .

[7]  Yassine Boubendir,et al.  Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions , 2013 .

[8]  Randy C. Paffenroth,et al.  Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations , 2009, J. Comput. Phys..

[9]  Norbert N. Bojarski,et al.  The k-space formulation of the scattering problem in the time domain , 1982 .

[10]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[11]  X. Antoine,et al.  Alternative integral equations for the iterative solution of acoustic scattering problems , 2005 .

[12]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[13]  Willi Jäger,et al.  Über das Dirichletsche Außenraumproblem für die Schwingungsgleichung , 1967 .

[14]  Olaf Steinbach,et al.  The construction of some efficient preconditioners in the boundary element method , 1998, Adv. Comput. Math..

[15]  Bruno Carpentieri,et al.  A Matrix-free Two-grid Preconditioner for Solving Boundary Integral Equations in Electromagnetism , 2006, Computing.

[16]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[17]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[18]  Robert T. Seeley,et al.  Topics in pseudo-differential operators , 2010 .

[19]  Yu. G. Smirnov The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape , 1994 .

[20]  Francis Collino,et al.  Extension to non-conforming meshes of the current and charge combined integral equation , 2012 .

[21]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[22]  X. Antoine,et al.  GENERALIZED COMBINED FIELD INTEGRAL EQUATIONS FOR THE ITERATIVE SOLUTION OF THE THREE-DIMENSIONAL HELMHOLTZ EQUATION , 2007 .

[23]  Snorre H. Christiansen,et al.  Discrete Fredholm properties and convergence estimates for the electric field integral equation , 2004, Math. Comput..

[24]  B. Dembart,et al.  Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering , 2002 .

[25]  W. Chew,et al.  Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies , 2000 .

[26]  Jun Zhang,et al.  Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid Integral equations in electromagnetics , 2004 .

[27]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[28]  David Levadoux Etude d'une équation intégrale adaptée à la résolution hautes fréquences de l'équation d'Helmholtz , 2001 .

[29]  Ralf Hiptmair,et al.  A Coercive Combined Field Integral Equation for Electromagnetic Scattering , 2004, SIAM J. Numer. Anal..

[30]  R. Kress Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering , 1985 .

[31]  A. Buffa,et al.  A multiplicative Calderón preconditioner for the electric field integral equation , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[32]  S. Pernet,et al.  An Unpreconditioned Boundary-Integral for Iterative Solution of Scattering Problems with Non-Constant Leontovitch Impedance Boundary Conditions , 2014 .

[33]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[34]  F. Alougesa,et al.  A stable well-conditioned integral equation for electromagnetism scattering , 2007 .

[35]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[36]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[37]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[38]  C. Turc,et al.  Wavenumber estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions , 2011 .

[39]  Jacob K. White,et al.  A precorrected-FFT method for electrostatic analysis of complicated 3-D structures , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[40]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[41]  E. Michielssen,et al.  A CalderÓn Multiplicative Preconditioner for the Combined Field Integral Equation , 2009, IEEE Transactions on Antennas and Propagation.

[42]  M. Taskinen,et al.  Current and charge Integral equation formulation , 2006, IEEE Transactions on Antennas and Propagation.

[43]  Zydrunas Gimbutas,et al.  Boundary integral equation analysis on the sphere , 2014, Numerische Mathematik.

[44]  Charles L. Epstein,et al.  Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II , 2008, 0808.3369.

[45]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[46]  Jiming Song,et al.  Fast Illinois solver code (FISC) , 1998 .

[47]  A. Taflove,et al.  A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach , 1987 .

[48]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[49]  A. De La Bourdonnaye Décomposition de H-1/2duv (Γ) et nature de l'opérateur de Steklov-Poincaré du problème extérieur de l'étectromagnétisme , 1993 .

[50]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[51]  M. Cátedra,et al.  A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform , 1989 .

[52]  Bruno Carpentieri,et al.  Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations , 2005, SIAM J. Sci. Comput..

[53]  D. Levadoux,et al.  A new well-conditioned Integral formulation for Maxwell equations in three dimensions , 2005, IEEE Transactions on Antennas and Propagation.

[54]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[55]  Christophe Geuzaine,et al.  Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations , 2014, J. Comput. Phys..

[56]  Olaf Steinbach,et al.  Modified Combined Field Integral Equations for Electromagnetic Scattering , 2009, SIAM J. Numer. Anal..

[57]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[58]  Oscar P. Bruno,et al.  Regularized integral equations and fast high‐order solvers for sound‐hard acoustic scattering problems , 2012 .

[59]  R.J. Adams,et al.  Combined field integral equation formulations for electromagnetic scattering from convex geometries , 2004, IEEE Transactions on Antennas and Propagation.

[60]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[61]  Marion Darbas,et al.  Generalized combined field integral equations for the iterative solution of the three-dimensional Maxwell equations , 2006, Appl. Math. Lett..

[62]  John L. Volakis,et al.  Incomplete LU preconditioner for FMM implementation , 2000 .