Surface Plasmon Nanolaser: Principle, Structure, Characteristics and Applications

[1]  Weiwei Liu,et al.  Adiabatic transfer of surface plasmons in non-Hermitian graphene waveguides , 2018, Optical and Quantum Electronics.

[2]  R. Ma,et al.  High Performance Plasmonic Nanolasers with External Quantum Efficiency Exceeding 10. , 2018, Nano letters.

[3]  Hua Long,et al.  Surface Plasmonic Lattice Solitons in Semi-Infinite Graphene Sheet Arrays , 2017, Journal of Lightwave Technology.

[4]  D. Koller,et al.  Leakage radiation microscopy of surface plasmon polaritons , 2008, 1002.0725.

[5]  Davide Comoretto,et al.  Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures. , 2016, Physical chemistry chemical physics : PCCP.

[6]  Litu Xu,et al.  Design of Surface Plasmon Nanolaser Based on MoS2 , 2018, Applied Sciences.

[7]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[8]  Mattias Beck,et al.  Microcavity Laser Oscillating in a Circuit-Based Resonator , 2010, Science.

[9]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[10]  M. Patrini,et al.  Fluorescence excitation enhancement by Bloch surface wave in all-polymer one- dimensional photonic structure , 2014 .

[11]  Yuhang Wan,et al.  Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement , 2013 .

[12]  Rupert F. Oulton,et al.  Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities , 2007 .

[13]  Xiaorui Tian,et al.  Highly tunable propagating surface plasmons on supported silver nanowires , 2013, Proceedings of the National Academy of Sciences.

[14]  O. Schmidt,et al.  Luminescent nanoparticles embedded in TiO2 microtube cavities for the activation of whispering-gallery-modes extending from the visible to the near infrared. , 2016, Nanoscale.

[15]  Weijing Kong,et al.  Fiber-to-Fiber Optical Switching Based on Gigantic Bloch-Surface-Wave-Induced Goos–Hanchen Shifts , 2013, IEEE Photonics Journal.

[16]  M. S. Skolnick,et al.  Observation of ultrahigh quality factor in a semiconductor microcavity , 2005 .

[17]  H. Ming,et al.  Manipulating Propagation Constants of Silver Nanowire Plasmonic Waveguide Modes Using a Dielectric Multilayer Substrate , 2018, Applied sciences.

[18]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[19]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[20]  Hua Long,et al.  Rabi Oscillations of Plasmonic Supermodes in Graphene Multilayer Arrays , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Qing-Nan Zhao,et al.  Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array , 2017 .

[22]  Qingbin Zhang,et al.  Attosecond Probing of Nuclear Dynamics with Trajectory-Resolved High-Harmonic Spectroscopy. , 2017, Physical review letters.

[23]  S. Xiao,et al.  Three-dimensional light confinement in a PT-symmetric nanocavity , 2016 .

[24]  C. Kryschi,et al.  Facile Design of a Plasmonic Nanolaser , 2017 .

[25]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[26]  Weiwei Liu,et al.  Strong absorption near exceptional points in plasmonic waveguide arrays , 2018 .

[27]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[28]  Shuai Liu,et al.  Low Threshold Plasmonic Nanolaser Based on Graphene , 2018 .

[29]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[30]  Hong Wei,et al.  Direction-resolved radiation from polarization-controlled surface plasmon modes on silver nanowire antennas. , 2016, Nanoscale.

[31]  Peixiang Lu,et al.  Method for direct observation of Bloch oscillations in semiconductors. , 2018, Optics express.

[32]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[33]  Hua Long,et al.  Topological interface modes in graphene multilayer arrays , 2018, Optics & Laser Technology.

[34]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[35]  R. Asgari,et al.  Plasmonic physics of 2D crystalline materials , 2018, 1802.01291.

[36]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[37]  O. Schmidt,et al.  Rolled-up TiO₂ optical microcavities for telecom and visible photonics. , 2014, Optics letters.

[38]  Oliver G Schmidt,et al.  Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing. , 2017, Optics letters.

[39]  Extending the Propagation Distance of a Silver Nanowire Plasmonic Waveguide with a Dielectric Multilayer Substrate. , 2017, Nano letters.

[40]  Hua Long,et al.  Effects of doping concentration on the surface plasmonic resonances and optical nonlinearities in AGZO nano-triangle arrays , 2017 .

[41]  T. Sen,et al.  Resonance Energy Transfer from Rhodamine 6G to Gold Nanoparticles by Steady-State and Time-Resolved Spectroscopy , 2008 .

[42]  Hongxing Xu,et al.  Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. , 2012, ACS nano.

[43]  M. Richetta,et al.  Laser Pulse Effects on Plasma-Sprayed and Bulk Tungsten , 2017 .

[44]  Koji Fujita,et al.  Wavelength-tunable Spasing in the Visible , 2022 .

[45]  C. Lin,et al.  High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. , 2016, Nano letters.

[46]  D. Birch,et al.  Dye-doped polystyrene-coated gold nanorods: towards wavelength tuneable SPASER , 2014, Methods and applications in fluorescence.

[47]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[48]  Hua Long,et al.  Numerical Study on Plasmonic Absorption Enhancement by a Rippled Graphene Sheet , 2017, Journal of Lightwave Technology.

[49]  W. Knoll,et al.  Bloch surface wave-enhanced fluorescence biosensor. , 2013, Biosensors & bioelectronics.

[50]  Guangyuan Li,et al.  A room temperature low-threshold ultraviolet plasmonic nanolaser , 2014, Nature Communications.

[51]  Zheng Zheng,et al.  Optimizing loss of the dielectric stack for Bloch-surface-wave sensors under different interrogation schemes , 2017 .

[52]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[53]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[54]  Bing Wang,et al.  Topological mode switching in a graphene doublet with exceptional points , 2017 .

[55]  M. Stockman,et al.  Spaser action, loss compensation, and stability in plasmonic systems with gain. , 2010, Physical review letters.

[56]  Weijing Kong,et al.  High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors , 2014, IEEE Photonics Conference 2012.

[57]  Fang Li,et al.  Preparation and Two-Photon Photoluminescence Properties of Organic Inorganic Hybrid Perovskites (C6H5CH2NH3)2PbBr4 and (C6H5CH2NH3)2PbI4 , 2018, Applied Sciences.