Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRI cohort study

Background and purpose Small vessel disease (mainly hypertensive arteriopathy and cerebral amyloid angiopathy (CAA)) is an important cause of spontaneous intracerebral haemorrhage (ICH), a devastating and still poorly understood stroke type. Enlarged perivascular spaces (EPVS) are a promising neuroimaging marker of small vessel disease. Based on the underlying arteriopathy distributions, we hypothesised that severe centrum semiovale EPVS are more common in lobar ICH attributed to CAA than other ICH. We evaluated EPVS prevalence, severity and distribution, and their clinical–radiological associations. Methods Retrospective multicentre cohort study of 121 ICH patients. Clinical information was obtained using standardised forms. Basal ganglia and centrum semiovale EPVS on T2-weighted MRI (graded 0–4 (>40 EPVS)), white-matter changes, cerebral microbleeds (CMBs) and lacunes were rated using validated scales. Results Patients with probable or possible CAA (n=76) had a higher prevalence of severe (>40) centrum semiovale EPVS compared with other ICH patients (35.5% vs 17.8%; p=0.041). In logistic regression age (OR: 1.43; 95% CI 1.01 to 2.02; p=0.045), deep CMBs (OR: 3.27; 95% CI 1.27 to 8.45; p=0.014) and mean white-matter changes score (OR: 1.29; 95% CI 1.17 to 1.43; p<0.0001) were independently associated with increased basal ganglia EPVS severity; only age was associated with increased centrum semiovale EPVS severity (OR: 1.50; 95% CI 1.08 to 2.10; p=0.017). Conclusions EPVS are common in ICH. Different mechanisms may account for EPVS according to their anatomical distribution. Severe centrum semiovale EPVS may be secondary to, and indicative of, CAA with value as a new neuroimaging marker. By contrast, basal ganglia EPVS severity is associated with markers of hypertensive arteriopathy.

[1]  B Mazoyer,et al.  Frequency and Location of Dilated Virchow-Robin Spaces in Elderly People: A Population-Based 3D MR Imaging Study , 2011, American Journal of Neuroradiology.

[2]  L. R. Caplan,et al.  Intracerebral haemorrhage , 1992, The Lancet.

[3]  S. Greenberg,et al.  Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston Criteria , 2003, Current atherosclerosis reports.

[4]  J. M. Wardlaw,et al.  Blood-brain barrier and cerebral small vessel disease , 2010, Journal of the Neurological Sciences.

[5]  Karen J. Ferguson,et al.  Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease , 2010, Stroke.

[6]  D. Neary,et al.  Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia. , 2005, AJNR. American journal of neuroradiology.

[7]  M. van Buchem,et al.  Descriptive Analysis of the Boston Criteria Applied to a Dutch-Type Cerebral Amyloid Angiopathy Population , 2009, Stroke.

[8]  W. M. van der Flier,et al.  Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[9]  D. Werring,et al.  Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[10]  Karen J. Ferguson,et al.  Enlarged perivascular spaces are associated with cognitive function in healthy elderly men , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[11]  D. Werring,et al.  The Microbleed Anatomical Rating Scale (MARS) , 2009, Neurology.

[12]  D. Knopman,et al.  Developmental Aspects of the Intracerebral Microvasculature and Perivascular Spaces: Insights into Brain Response to Late-Life Diseases , 2011, Journal of neuropathology and experimental neurology.

[13]  P. Scheltens,et al.  A New Rating Scale for Age-Related White Matter Changes Applicable to MRI and CT , 2001, Stroke.

[14]  Carole Dufouil,et al.  High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. , 2010, Journal of Alzheimer's disease : JAD.

[15]  B. Mazoyer,et al.  Severity of Dilated Virchow-Robin Spaces Is Associated With Age, Blood Pressure, and MRI Markers of Small Vessel Disease: A Population-Based Study , 2010, Stroke.

[16]  F Barkhof,et al.  Enlarged Virchow-Robin spaces: do they matter? , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[17]  H. Bokura,et al.  Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study , 1998, Journal of Neurology.

[18]  M. H. Öztürk,et al.  Comparison of MR Signal Intensities of Cerebral Perivascular (Virchow-Robin) and Subarachnoid Spaces , 2002, Journal of computer assisted tomography.