Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications
暂无分享,去创建一个
Régis Duvigneau | André Galligo | Bernard Mourrain | Gang Xu | B. Mourrain | A. Galligo | R. Duvigneau | Gang Xu
[1] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[2] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[3] Régis Duvigneau,et al. An Introduction to Isogeometric Analysis with Application to Thermal Conduction , 2009 .
[4] Gerald E. Farin,et al. Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.
[5] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[6] Régis Duvigneau,et al. Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2010, Comput. Aided Des..
[7] Elaine Cohen,et al. Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.
[8] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[9] K. Mørken. Some identities for products and degree raising of splines , 1991 .
[10] Régis Duvigneau,et al. Variational Harmonic Method for Parameterization of Computational Domain in 2D Isogeometric Analysis , 2011, 2011 12th International Conference on Computer-Aided Design and Computer Graphics.
[11] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[12] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[13] Ying He,et al. Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.
[14] Chi-Wing Fu,et al. Parameterization of Star-Shaped Volumes Using Green's Functions , 2010, GMP.
[15] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[16] J. M. Cascón,et al. A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .
[17] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[18] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[19] Gerald E. Farin,et al. Discrete Coons patches , 1999, Comput. Aided Geom. Des..
[20] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[21] George Celniker,et al. Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.
[22] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[23] Philipp Lamby,et al. Application of B-spline techniques to the modeling of airplane wings and numerical grid generation , 2008, Comput. Aided Geom. Des..
[24] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[25] Philip E. Gill,et al. Practical optimization , 1981 .
[26] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[27] Hong Qin,et al. Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.
[28] Gershon Elber,et al. Volumetric Boolean sum , 2012, Comput. Aided Geom. Des..
[29] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[30] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.