Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications

Parameterization of the computational domain is a key step in isogeometric analysis just as mesh generation is in finite element analysis. In this paper, we study the volume parameterization problem of the multi-block computational domain in an isogeometric version, i.e., how to generate analysis-suitable parameterization of the multi-block computational domain bounded by B-spline surfaces. Firstly, we show how to find good volume parameterization of the single-block computational domain by solving a constraint optimization problem, in which the constraint condition is the injectivity sufficient conditions of B-spline volume parameterization, and the optimization term is the minimization of quadratic energy functions related to the first and second derivatives of B-spline volume parameterization. By using this method, the resulting volume parameterization has no self-intersections, and the isoparametric structure has good uniformity and orthogonality. Then we extend this method to the multi-block case, in which the continuity condition between the neighbor B-spline volumes should be added to the constraint term. The effectiveness of the proposed method is illustrated by several examples based on the three-dimensional heat conduction problem.

[1]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[2]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[3]  Régis Duvigneau,et al.  An Introduction to Isogeometric Analysis with Application to Thermal Conduction , 2009 .

[4]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[5]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[6]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2010, Comput. Aided Des..

[7]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[8]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[9]  K. Mørken Some identities for products and degree raising of splines , 1991 .

[10]  Régis Duvigneau,et al.  Variational Harmonic Method for Parameterization of Computational Domain in 2D Isogeometric Analysis , 2011, 2011 12th International Conference on Computer-Aided Design and Computer Graphics.

[11]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[12]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[13]  Ying He,et al.  Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.

[14]  Chi-Wing Fu,et al.  Parameterization of Star-Shaped Volumes Using Green's Functions , 2010, GMP.

[15]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[16]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[17]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[18]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[19]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[20]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[21]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[22]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[23]  Philipp Lamby,et al.  Application of B-spline techniques to the modeling of airplane wings and numerical grid generation , 2008, Comput. Aided Geom. Des..

[24]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[25]  Philip E. Gill,et al.  Practical optimization , 1981 .

[26]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[27]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[28]  Gershon Elber,et al.  Volumetric Boolean sum , 2012, Comput. Aided Geom. Des..

[29]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[30]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.