Enhanced CO2/CH4 Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF‐Polymer Formulations

Membrane‐based separations offer great potential for more sustainable and economical natural gas upgrading. Systematic studies of CO2/CH4 separation over a wide range of temperatures from 65 °C (338 K) to as low as −40 °C (233 K) reveals a favorable separation mechanism toward CO2 by incorporating Y‐fum‐fcu‐MOF as a filler in a 6FDA‐DAM polyimide membrane. Notably, the decrease of the temperature from 308 K down to 233 K affords an extremely high CO2/CH4 selectivity (≈130) for the hybrid Y‐fum‐fcu‐MOF/6FDA‐DAM membrane, about four‐fold enhancement, with an associated CO2 permeability above 1000 barrers. At subambient temperatures, the pronounced CO2/CH4 diffusion selectivity dominates the high permeation selectivity, and the enhanced CO2 solubility promotes high CO2 permeability. The differences in adsorption enthalpy and activation enthalpy for diffusion between CO2 and CH4 produce the observed favorable CO2 permeation versus CH4. Insights into opportunities for using mixed‐matrix membrane‐based natural gas separations at extreme conditions are provided.

[1]  A. Kaiser,et al.  Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications , 2019, Advanced science.

[2]  D. Theodorou,et al.  Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers , 2019, Membranes.

[3]  Wenhui Shi,et al.  Structural Engineering of Low‐Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications , 2019, Advanced science.

[4]  J. M. Serra,et al.  Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation , 2018, Membranes.

[5]  Yang Liu,et al.  Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations , 2018, Nature Materials.

[6]  N. McKeown A perfect match , 2018, Nature Materials.

[7]  W. Koros,et al.  The significance of entropic selectivity in carbon molecular sieve membranes derived from 6FDA/DETDA:DABA(3:2) polyimide , 2017 .

[8]  Yujie Ban,et al.  Microstructural Engineering and Architectural Design of Metal–Organic Framework Membranes , 2017, Advanced materials.

[9]  J. Larson,et al.  Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat , 2017, Science.

[10]  P. Sheng,et al.  Fabrication and molecular transport studies of highly c-Oriented AFI membranes , 2017 .

[11]  Magne Hillestad,et al.  Potential applications of membrane separation for subsea natural gas processing: A review , 2017 .

[12]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[13]  Y. S. Lin,et al.  Metal‐organic framework membrane process for high purity CO2 production , 2016 .

[14]  Shiping Zhu,et al.  Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organic‐Framework Particles for Separations Applications , 2016, Advanced materials.

[15]  W. Koros,et al.  Post-combustion carbon dioxide capture via 6FDA/BPDA-DAM hollow fiber membranes at sub-ambient temperatures , 2016 .

[16]  Liangjun Hu,et al.  Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance , 2016, Advanced materials.

[17]  Gigi George,et al.  Polymer membranes for acid gas removal from natural gas , 2016 .

[18]  Ayalew H. Assen,et al.  Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. , 2015, Angewandte Chemie.

[19]  William J. Koros,et al.  Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate) , 2015 .

[20]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[21]  B. Freeman,et al.  Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship , 2015 .

[22]  M. Rosseinsky Perspective: Metal-organic frameworks—Opportunities and challenges , 2014 .

[23]  Abulhassan Ali,et al.  Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies , 2014 .

[24]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[25]  C. Téllez,et al.  High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. , 2013, Journal of the American Chemical Society.

[26]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[27]  David J. Hasse,et al.  CO2 capture by sub-ambient membrane operation☆ , 2013 .

[28]  Tao Li,et al.  Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers , 2013 .

[29]  Omid Ghaffari Nik,et al.  Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation , 2012 .

[30]  Eric F. May,et al.  The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies , 2012 .

[31]  Ying Dai,et al.  High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations , 2012 .

[32]  Donald R Paul,et al.  Sub-TgCross-Linking of a Polyimide Membrane for Enhanced CO2Plasticization Resistance for Natural Gas Separation , 2011 .

[33]  C. Téllez,et al.  Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation , 2011 .

[34]  B. Freeman,et al.  Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results , 2010 .

[35]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[36]  W. Koros,et al.  Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes—Part A. Experimental , 2010 .

[37]  William J. Koros,et al.  Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. , 2009, Journal of the American Chemical Society.

[38]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[39]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[40]  L. Robeson,et al.  The upper bound revisited , 2008 .

[41]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[42]  Sangil Kim,et al.  Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment , 2007 .

[43]  A. Car,et al.  Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation , 2006 .

[44]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[45]  N. A. Ochoa,et al.  ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation , 2004 .

[46]  Donald R Paul,et al.  Natural gas permeation in polyimide membranes , 2004 .

[47]  O. Terasaki,et al.  Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation , 2003, Science.

[48]  W. Koros,et al.  Temperature dependence of gas sorption and transport properties in polymers: measurement and applications , 1992 .