The Rank+Nullity Theorem

The Rank+Nullity Theorem The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W, then dim(V) = rank(T) + nullity(T), where rank(T) = dim(im(T)) and nullity(T) = dim(ker(T)). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T) and extend it to a basis B of V, and then show that dim(im(T)) is equal to |B - A|, and that T is one-to-one on B - A.

[1]  Czes Law Byli´nski,et al.  Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[2]  Wojciech A. Trybulec Linear Combinations in Real Linear Space , 1990 .

[3]  Wojciech A. Trybulec Linear Combinations in Vector Space , 1990 .

[4]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[5]  Wojciech A. Trybulec Subspaces and Cosets of Subspaces in Vector Space , 1990 .

[6]  Artur Korni,et al.  Some Basic Properties of Many Sorted Sets , 1996 .

[7]  Eugeniusz Kusak Abelian Groups, Fields and Vector Spaces 1 , 1990 .

[8]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[9]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[10]  Andrzej Trybulec,et al.  Miscellaneous Facts about Functions , 1996 .

[11]  Wojciech A. Trybulec Operations on Subspaces in Vector Space , 1990 .

[12]  Wojciech A. Trybulec Pigeon Hole Principle , 1990 .

[13]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[14]  Andrzej Trybulec,et al.  Tuples, Projections and Cartesian Products , 1990 .

[15]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[16]  Micha l Muzalewski Rings and Modules - Part II , 1991 .

[17]  Mariusz Żynel,et al.  The Steinitz Theorem and the Dimension of a Vector Space , 1995 .

[18]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[19]  Wojciech A. Trybulec BASIS FOR A VECTOR SPACE , 1990 .

[20]  Czeslaw Bylinski Binary Operations Applied to Finite Sequences , 1990 .

[21]  Andrzej Trybulec,et al.  Function Domains and Frænkel Operator , 1990 .

[22]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[23]  Wojciech A. Trybulec Vectors in Real Linear Space , 1990 .

[24]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[25]  Robert Milewski,et al.  Associated Matrix of Linear Map , 1996 .

[26]  Wojciech A. Trybulec Non-contiguous Substrings and One-to-one Finite Sequences , 1990 .

[27]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .