Spectral radius and Hamiltonian graphs
暂无分享,去创建一个
Huiqing Liu | Mei Lu | Feng Tian | F. Tian | Mei Lu | Huiqing Liu
[1] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[2] F. Tian,et al. On the spectral radius of graphs , 2004 .
[3] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[4] Vladimir Nikiforov,et al. Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.
[5] Benny Sudakov,et al. Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.
[6] M. Hofmeister,et al. Spectral Radius and Degree Sequence , 1988 .
[7] Bojan Mohar,et al. A domain monotonicity theorem for graphs and Hamiltonicity , 1992, Discret. Appl. Math..
[8] J. V. D. Heuvel,et al. Hamilton cycles and eigenvalues of graphs , 1995 .
[9] W. Haemers. Interlacing eigenvalues and graphs , 1995 .
[10] Xiao-Dong Zhang,et al. On the Spectral Radius of Graphs with Cut Vertices , 2001, J. Comb. Theory, Ser. B.
[11] Dragan Stevanovic,et al. The largest eigenvalue of nonregular graphs , 2004, J. Comb. Theory, Ser. B.
[12] H. Yuan. A bound on the spectral radius of graphs , 1988 .
[13] Huiqing Liu,et al. On the spectral radius of graphs with cut edges , 2004 .
[14] Yuan Hong,et al. A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.
[15] V. Chvátal. On Hamilton's ideals , 1972 .
[16] Steve Butler,et al. Small Spectral Gap in the Combinatorial Laplacian Implies Hamiltonian , 2010 .