Preparation of Lead–Calcium Hydroxyapatite Solid Solutions by a Wet Method Using Acetamide

Lead–calcium hydroxyapatite solid solutions with different Pb/(Pb+Ca) molar ratios (XPb) were prepared by a wet method using acetamide (AA). The crystal phase and structure of the products depended on the aging period (ta), Pb/(Pb+Ca) molar ratio ([XPb]), and AA concentration ([AA]) of the starting solution. At [AA]=1.6 mol dm−3 and ta=6 days, the large needle-like PbCaHap particles were formed from solutions at [XPb]=0–0.6 and 0.9–1. Under the other AA concentrations and aging periods, pure PbCaHap particles could be obtained in a narrower region of [XPb]; e.g., PbCaHap was formed from solutions at [AA]=0.8 mol dm−3, ta=6 days, and [XPb]= 0–0.1, 0.4–0.5, and 0.9–1.

[1]  K. Kandori,et al.  Preparation of lead hydroxyapatite particles using acetamide , 1999 .

[2]  Ishikawa,et al.  Preparation and Characterization of Barium-Strontium Hydroxyapatites , 1997, Journal of colloid and interface science.

[3]  K. Kandori,et al.  Preparation and characterization of magnesium–calcium hydroxyapatites , 1996 .

[4]  Y. Matsumura,et al.  Lead-Calcium Hydroxyapatite: Cation Effects in the Oxidative Coupling of Methane , 1995 .

[5]  K. Kandori,et al.  Preparation of calcium hydroxyapatitie using amides , 1994 .

[6]  Brent Constantz,et al.  Hydroxyapatite and Related Materials , 1994 .

[7]  Y. Matsumura,et al.  SELECTIVE OXIDATIVE COUPLING OF METHANE CATALYSED OVER HYDROXYAPATITE ION-EXCHANGED WITH LEAD , 1994 .

[8]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[9]  K. Kandori,et al.  Adsorption of CO2 on non-stoichiometric strontium–calcium hydroxyapatites , 1993 .

[10]  R Z LeGeros,et al.  Calcium phosphates in oral biology and medicine. , 1991, Monographs in oral science.

[11]  M. Gazzano,et al.  Structure refinements of lead-substituted calcium hydroxyapatite by X-ray powder fitting , 1989 .

[12]  M. Miyake,et al.  Structure refinements of Pb2+ ion-exchanged apatites by x-ray powder pattern-fitting , 1986 .

[13]  A. Poater,et al.  Catalysis Science and Technology , 2022 .

[14]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[15]  G. Engel,et al.  Mischkristallbildung und Kationenordnung im System Bleihydroxylapatit-Calciumhydroxylapatit , 1975 .

[16]  B. O. Fowler Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution , 1974 .

[17]  G. Engel,et al.  Infrared spectra of the hydroxyl ions in various apatites , 1972 .

[18]  Rajindar Singh,et al.  A new method of preparation of solid solutions of calcium and lead hydroxylapatites , 1972 .

[19]  G. Engel,et al.  I.R. spectra of the phosphate ions in various apatites , 1970 .

[20]  Walter E. Brown,et al.  Preparation and Solubility of Hydroxyapatite. , 1968, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[21]  E. E. Berry,et al.  Spectra structure correlations in hydroxy and fluorapatite , 1966 .

[22]  J. H. de Boer,et al.  Studies on pore systems in catalysts: V. The t method , 1965 .

[23]  Richard W. Mooney,et al.  Alkaline Earth Phosphates. , 1961 .

[24]  M. Müller Die Fällung und die röntgenographische Untersuchung des Mischkrystallsystems Ca10(PO4)6(OH)2Pb10(P04)6(OH)2 , 1947 .

[25]  R. Klement Basische Phosphate zweiwertiger Metalle III. Barium–Hydroxylapatit , 1938 .