Observational Techniques with Transiting Exoplanetary Atmospheres

Transiting exoplanets provide detailed access to their atmospheres, as the planet’s signal can be effectively separated from that of its host star. For transiting exoplanets three fundamental atmospheric measurements are possible: transmission spectra—where atmospheric absorption features are detected across an exoplanets limb during transit, emission spectra—where the day-side average emission of the planet is detected during secondary eclipse events, and phase curves—where the spectral emission of the planet is mapped globally following the planet around its orbit. All of these techniques have been well proven to provide detailed characterisation information about planets ranging from super-Earth to Jupiter size. In this chapter, I present the overall background, history and methodology of these measurements. A few of the major science related questions are also discussed, which range from broad questions about planet formation and migration, to detailed atmospheric physics questions about how a planet’s atmosphere responds under extreme conditions. I also discuss the analysis methods and light-curve fitting techniques that have been developed to help reach the extreme spectrophotometric accuracies needed, and how to derive reliable error estimates despite limiting systematic errors. As a transmission spectra derived from primary transit is a unique measurement outside of our solar system, I discuss its physical interpretation and the underlying degeneracies associated with the measurement.

[1]  C. Moutou,et al.  The upper atmosphere of the exoplanet HD 209458 b revealed by the sodium D lines: Temperature-pressure profile, ionization layer, and thermosphere , 2010, 1012.5938.

[2]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[3]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[4]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[5]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[6]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[7]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[8]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[9]  Frank J. Low,et al.  The 2.8-14-MICRON Spectrum of Jupiter , 1969 .

[10]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[11]  M. Belton,et al.  The thermal structure of the atmosphere of Jupiter , 1974 .

[12]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[13]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[14]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[15]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[16]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[17]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[18]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[19]  J. Bailey The Dawes Review 3: The Atmospheres of Extrasolar Planets and Brown Dwarfs , 2014, Publications of the Astronomical Society of Australia.

[20]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[21]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[22]  Nikole K. Lewis,et al.  A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c , 2016, Nature.

[23]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[24]  D. Ehrenreich,et al.  Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph , 2015, 1503.05581.

[25]  L. Koesterke,et al.  A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES , 2011, 1109.1802.

[26]  T. Evans,et al.  A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models , 2015, 1504.05942.

[27]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[28]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[29]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[30]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[31]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[32]  M. Swain,et al.  An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy , 2016, 1610.02049.

[34]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[35]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[36]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[37]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[38]  Nikku Madhusudhan,et al.  NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY , 2016, 1605.08810.

[39]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[40]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[41]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[42]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[43]  A Spitzer* Infrared Radius for the Transiting Extrasolar Planet HD 209458b , 2006, astro-ph/0606096.

[44]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[45]  Takayuki Kotani,et al.  High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b , 2017, 1710.05276.

[46]  M. Asplund,et al.  Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres Comparison with 1D models and HST light curve observations , 2012, 1202.0548.

[47]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[48]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[49]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[50]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[51]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[52]  A. Burrows Highlights in the study of exoplanet atmospheres , 2014, Nature.

[53]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[54]  D. Deming,et al.  SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b , 2015, 1505.01490.

[55]  Sara Seager,et al.  Constraining Exoplanet Mass from Transmission Spectroscopy , 2013, Science.

[56]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[57]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[58]  E. Chiang,et al.  BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS , 2015, 1510.08855.

[59]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[60]  Saurabh Jha,et al.  An extrasolar planet that transits the disk of its parent star , 2003, Nature.

[61]  S. T. Megeath,et al.  A Sensitive Search for Variability in Late L Dwarfs: The Quest for Weather , 2005 .

[62]  J. D'esert,et al.  Temperature–pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating , 2012, 1202.4721.

[63]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[64]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[65]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[66]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[67]  S. Ridgway Jupiter: Identification of ethane and acetylene , 1974 .

[68]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[69]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[70]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[71]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[72]  J. Eastman,et al.  MOST DETECTS TRANSITS OF HD 97658b, A WARM, LIKELY VOLATILE-RICH SUPER-EARTH , 2013 .

[73]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[74]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[75]  C. Moutou,et al.  Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110] , 2011, 1110.5750.

[76]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[77]  S. Aigrain,et al.  Hst hot jupiter transmission spectral survey: Detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations , 2013, 1308.2106.

[78]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[79]  W. Thi,et al.  Dust in brown dwarfs and extra-solar planets - I. Chemical composition and spectral appearance of quasi-static cloud layers , 2008, 0803.4315.

[80]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[81]  Caltech,et al.  Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy , 2012, 1201.6573.

[82]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[83]  Nikole K. Lewis,et al.  HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance , 2017, Science.

[84]  I. Snellen,et al.  Ground-based K-band detection of thermal emission from the exoplanet TrES-3b , 2009, 0901.1878.

[85]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[86]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[87]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[88]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[89]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[90]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[91]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[92]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[93]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[94]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[95]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[96]  T. Evans,et al.  VLT/FORS2 comparative transmission spectroscopy II: confirmation of a cloud-deck and Rayleigh scattering in WASP-31b, but no potassium? , 2017, 1702.02150.

[97]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[98]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[99]  Tucson,et al.  HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b , 2014, 1411.4567.

[100]  M. López-Morales,et al.  Thermal Emission from Transiting Very Hot Jupiters: Prospects for Ground-based Detection at Optical Wavelengths , 2007, 0708.0822.

[101]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[102]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[103]  Kevin Heng,et al.  The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge , 2017, 1702.02051.

[104]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[105]  David Charbonneau,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD?209458 , 2001 .

[106]  Jacob L. Bean,et al.  NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b , 2014, 1409.5336.

[107]  Adam Burrows,et al.  The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs , 1999, astro-ph/9908078.

[108]  Ian J. M. Crossfield,et al.  Observations of Exoplanet Atmospheres , 2015, 1507.03966.

[109]  B. Fegley,et al.  ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON , 2010, 1001.3639.

[110]  Andrea Chiavassa,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - IV. Limb darkening coefficients , 2014, 1403.3487.

[111]  Zucker,et al.  The Spectroscopic Orbit of the Planetary Companion Transiting HD 209458. , 2000, The Astrophysical journal.

[112]  Mercedes Lopez-Morales,et al.  Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009, 0901.1876.

[113]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[114]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[115]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[116]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.