Adaptive Compensation of Hysteretic and Creep Non-linearities in Solid-state Actuators
暂无分享,去创建一个
[1] Hartmut Janocha. Actuators : basics and applications , 2004 .
[2] A. Nagurney,et al. Projected Dynamical Systems and Variational Inequalities with Applications , 1995 .
[3] Hui Chen,et al. Corrigendum to “A neural networks based model for rate-dependent hysteresis for piezoceramic actuators” [Sens. Actuators A 143 (2008) 370–376] , 2008 .
[4] Petros A. Ioannou,et al. Robust Adaptive Control , 2012 .
[5] Jan Swevers,et al. Online identification of hysteresis functions with non-local memory , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).
[6] Lining Sun,et al. A new open-loop driving method of piezoelectric actuator for periodic reference inputs. , 2006, Ultrasonics.
[7] Klaus Kuhnen,et al. Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren , 2001 .
[8] R. Ben Mrad,et al. A discrete-time compensation algorithm for hysteresis in piezoceramic actuators , 2004 .
[9] Klaus Kuhnen,et al. Modelling, Identification, and Compensation of Complex Hysteretic and log(t)-Type Creep Nonlinearities , 2005, Control. Intell. Syst..
[10] Toshio Fukuda,et al. Adaptive Control for the Systems Preceded by Hysteresis , 2008, IEEE Transactions on Automatic Control.
[11] Pavel Krejcí,et al. Existence, Uniqueness and L∞-stability of the Prandtl-Ishlinskii Hysteresis and Creep Compensator , 2008, Eur. J. Control.
[12] R. Ben Mrad,et al. On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .
[13] H. Janocha,et al. EXPLOITATION OF INHERENT SENSOR EFFECTS IN MAGNETOSTRICTIVE ACTUATORS , 2004 .
[14] Gang Tao,et al. Adaptive Control of Systems with Actuator and Sensor Nonlinearities , 1996 .
[15] H. Hu,et al. Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions , 2005, IEEE/ASME Transactions on Mechatronics.
[16] Santosh Devasia,et al. Hysteresis, Creep, and Vibration Compensation for Piezoactuators: Feedback and Feedforward Control 1 , 2002 .
[17] Santosh Devasia,et al. Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.
[18] M. P. R. V. Rao. Stable adaptive systems, Kumpati S. Narendra and Anuradha M. Annaswamy, Prentice Hall, Englewood Cliffs, NJ, 1989, 494 pp., ISBN 0‐13‐839994‐8, £51.35 , 1990 .
[19] Klaus Kuhnen,et al. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.
[20] Subhash Rakheja,et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.
[21] A. Kurdila,et al. Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .
[22] Pavel Krejcí,et al. An Adaptive Gradient Law with Projection for Non-smooth Convex Boundaries , 2006, Eur. J. Control.
[23] R. Iyer,et al. Control of hysteretic systems through inverse compensation , 2009, IEEE Control Systems.
[24] John S. Baras,et al. Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.
[25] Gang Tao,et al. Adaptive control of plants with unknown hystereses , 1995 .
[26] Anuradha M. Annaswamy,et al. Stable Adaptive Systems , 1989 .
[27] M. Krasnosel’skiǐ,et al. Systems with Hysteresis , 1989 .