The Evolution of the Global Stellar Mass Density at 0 < z < 3

The buildup of stellar mass in galaxies is the consequence of their past star formation and merging histories. Here we report measurements of rest-frame optical light and calculations of stellar mass at high redshift based on an infrared-selected sample of galaxies from the Hubble Deep Field-North. The bright envelope of rest-frame B-band galaxy luminosities is similar in the range 0 < z < 3, and the comoving luminosity density is constant to within a factor of 3 over that redshift range. However, galaxies at higher redshifts are bluer, and stellar population modeling indicates that they had significantly lower mass-to-light ratios than those of present-day L* galaxies. This leads to a global stellar mass density, Ω* , that rises with time from z = 3 to the present. This measurement essentially traces the integral of the cosmic star formation history that has been the subject of previous investigations. Between 50% and 75% of the present-day stellar mass density had formed by z ~ 1, but at z ≈ 2.7 we find that only 3%-14% of today's stars were present. This increase in Ω* with time is broadly consistent with observations of the evolving global star formation rate, once dust extinction is taken into account, but is steeper at 1 < z < 3 than predicted by some recent semianalytic models of galaxy formation. The observations appear to be inconsistent with scenarios in which the bulk of stars in present-day galactic spheroids formed at z 2.

[1]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[2]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[3]  The nature of high-redshift galaxies , 1998, astro-ph/9806228.

[4]  Lennox L. Cowie,et al.  Redshift Clustering in the Hubble Deep Field , 1996 .

[5]  G. Zamorani,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001 .

[6]  D. Calzetti,et al.  The Evolution of Dust Opacity in Galaxies , 1998, astro-ph/9811099.

[7]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[8]  H. Ferguson,et al.  Lyman Break Galaxies and the Reionization of the Intergalactic Medium , 2002, astro-ph/0204198.

[9]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[10]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[11]  Cowie,et al.  Optically Faint Microjansky Radio Sources. , 1999, The Astrophysical journal.

[12]  B. Poggianti K and evolutionary corrections from uv to ir , 1996, astro-ph/9608029.

[13]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[14]  S. M. Fall,et al.  Accepted for Publication in the Astrophysical Journal Metallicity Evolution of Damped Lyman-Alpha Galaxies , 2002 .

[15]  Henry C. Ferguson,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 19/02/01 THE STELLAR POPULATIONS AND EVOLUTION OF LYMAN BREAK GALAXIES 1 , 2001 .

[16]  Marcin Sawicki,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997 .

[17]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[18]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[19]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[20]  Massimo Stiavelli,et al.  The Hubble Deep Field South: Formulation of the observing campaign , 2000 .

[21]  Judith G. Cohen,et al.  Caltech Faint Galaxy Redshift Survey. XVI. The Luminosity Function for Galaxies in the Region of the Hubble Deep Field-North to z = 1.5 , 2001, astro-ph/0107107.

[22]  Alexander S. Szalay,et al.  The Unusual Infrared Object HDF-N J123656.3+621322 , 1999, astro-ph/9908083.

[23]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[24]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[25]  Caltech Faint Galaxy Redshift Survey. XIII. Spectral Energy Distributions for Galaxies in the Region of the Hubble Deep Field North , 2001, astro-ph/0101251.

[26]  Guinevere Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1999 .

[27]  Serendipitously Detected Galaxies in the Hubble Deep Field , 2001, astro-ph/0105043.

[28]  Alberto Fernandez-Soto,et al.  On the Compared Accuracy and Reliability of Spectroscopic and Photometric Redshift Measurements , 2000, astro-ph/0007447.

[29]  David W. Hogg,et al.  The Luminosity Density of Red Galaxies , 2002 .

[30]  S. M. Fall,et al.  Cosmic Histories of Stars, Gas, Heavy Elements, and Dust in Galaxies , 1998, astro-ph/9812182.

[31]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[32]  Mark Dickinson The first galaxies: structure and stellar populations , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Caltech,et al.  The evolution of galaxy mass in hierarchical models , 2002, astro-ph/0203051.

[34]  P. Salucci,et al.  The Baryonic Mass Function of Spiral Galaxies. Clues to Galaxy Formation and to the Nature of Damped Lyman Alpha Clouds , 1998 .

[35]  Lennox L. Cowie,et al.  Evidence for a Gradual Decline in the Universal Rest-Frame Ultraviolet Luminosity Density for z < 1 , 1999, astro-ph/9904345.

[36]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[37]  A. Cimatti,et al.  The K20 survey - IV. The redshift distribution of $K_{\rm s}<20$ galaxies: A test of galaxy formation models , 2002, astro-ph/0207191.

[38]  O. Fèvre,et al.  The Canada France Redshift Survey VIII: Evolution of the clustering of galaxies from z~1 , 1995, astro-ph/9510090.

[39]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[40]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, Data Reduction, and , 1996, astro-ph/9607174.

[41]  P. Nugent,et al.  High-Redshift Supernovae in the Hubble Deep Field , 1999, astro-ph/9903229.

[42]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[43]  Oxford,et al.  The COMBO-17 survey: Evolution of the galaxy luminosity function from 25,000 galaxies with 0.2 < z < 1.2 , 2002, astro-ph/0208345.

[44]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998 .

[45]  A. Fernandez-Soto,et al.  A New Catalog of Photometric Redshifts in the Hubble Deep Field , 1999 .

[46]  E. A. Richards,et al.  Mapping the Evolution of High-Redshift Dusty Galaxies with Submillimeter Observations of a Radio-selected Sample , 2000, astro-ph/0001096.

[47]  Star formation history in the nicmos northern Hubble Deep Field , 2001 .

[48]  Patrick Shopbell,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 2000 .

[49]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[50]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[51]  Konrad Kuijken,et al.  A K-Band-selected Photometric Redshift Catalog in the Hubble Deep Field South: Sampling the Rest-Frame V Band to z = 3 , 2001, astro-ph/0106074.

[52]  H. Rix,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[53]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[54]  Stefano Casertano,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[55]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[56]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[57]  J. Dunlop,et al.  MASS OF GALAXIES AT LOW AND HIGH REDSHIFT , 2003 .

[58]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[59]  S. M. Fall,et al.  The Hubble Deep Field : proceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland, May 6-9, 1997 , 1998 .

[60]  M. Dickinson A complete NICMOS map of the Hubble Deep Field , 1998 .

[61]  R. J. Brunner,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997 .

[62]  R. Peletier,et al.  The Formation of Galactic Bulges , 2004, astro-ph/0502286.

[63]  G. Illingworth Galaxies at High Redshift , 2000 .

[64]  The Star Formation Rate Intensity Distribution Function: Implications for the Cosmic Star Formation Rate History of the Universe , 2001, astro-ph/0111129.

[65]  Matthew Colless,et al.  Autofib Redshift Survey — I. Evolution of the galaxy luminosity function , 1995, astro-ph/9512057.

[66]  D. Burke,et al.  STAR FORMATION HISTORY SINCE z = 1.5 AS INFERRED FROM REST-FRAME ULTRAVIOLET LUMINOSITY DENSITY EVOLUTION , 2002, astro-ph/0203168.

[67]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[68]  E. O. Smith,et al.  After the dark ages : when galaxies were young (the universe at 2 < z < 5) : ninth astrophysics conference, College Park, Maryland October 1998 , 1999 .