On the Expressiveness and Monitoring of Metric Temporal Logic

It is known that Metric Temporal Logic (MTL) is strictly less expressive than the Monadic First-Order Logic of Order and Metric (FO[<, +1]) when interpreted over timed words; this remains true even when the time domain is bounded a priori. In this work, we present an extension of MTL with the same expressive power as FO[<, +1] over bounded timed words (and also, trivially, over time-bounded signals). We then show that expressive completeness also holds in the general (time-unbounded) case if we allow the use of rational constants $q \in \mathbb{Q}$ in formulas. This extended version of MTL therefore yields a definitive real-time analogue of Kamp's theorem. As an application, we propose a trace-length independent monitoring procedure for our extension of MTL, the first such procedure in a dense real-time setting.

[1]  Felix Klaedtke,et al.  Scalable Offline Monitoring , 2014, RV.

[2]  Patricia Bouyer,et al.  On the Expressiveness of TPTL and MTL , 2005, FSTTCS.

[3]  Dejan Nickovic,et al.  From MITL to Timed Automata , 2006, FORMATS.

[4]  Martin Leucker,et al.  Runtime verification revisited , 2005 .

[5]  Zohar Manna,et al.  Temporal verification of reactive systems - safety , 1995 .

[6]  Paritosh K. Pandya,et al.  On Expressive Powers of Timed Logics: Comparing Boundedness, Non-punctuality, and Deterministic Freezing , 2011, CONCUR.

[7]  Benjamin Monmege,et al.  MightyL: A Compositional Translation from MITL to Timed Automata , 2017, CAV.

[8]  Joël Ouaknine,et al.  On Metric Temporal Logic and Faulty Turing Machines , 2006, FoSSaCS.

[9]  Yoram Hirshfeld,et al.  Expressiveness of Metric Modalities for Continuous Time , 2006, CSR.

[10]  Alexander Moshe Rabinovich Temporal logics over linear time domains are in PSPACE , 2012, Inf. Comput..

[11]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[12]  Thomas Brihaye,et al.  On MITL and Alternating Timed Automata over Infinite Words , 2014, FORMATS.

[13]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[14]  Mark Reynolds The complexity of temporal logic over the reals , 2010, Ann. Pure Appl. Log..

[15]  KoymansRon Specifying real-time properties with metric temporal logic , 1990 .

[16]  Yoram Hirshfeld,et al.  An Expressive Temporal Logic for Real Time , 2006, MFCS.

[17]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[18]  Kousha Etessami,et al.  An Until hierarchy for temporal logic , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[19]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[20]  Joël Ouaknine,et al.  Towards a Theory of Time-Bounded Verification , 2010, ICALP.

[21]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[22]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[23]  Joël Ouaknine,et al.  Time-Bounded Verification , 2009, CONCUR.

[24]  Deepak D'Souza,et al.  On the expressiveness of MTL in the pointwise and continuous semantics , 2007, International Journal on Software Tools for Technology Transfer.

[25]  Dileep Kini,et al.  On construction of safety signal automata for MITL[ u, s] using temporal projections , 2011, FORMATS 2011.

[26]  Yoram Hirshfeld,et al.  Logics for Real Time: Decidability and Complexity , 2004, Fundam. Informaticae.

[27]  B.H.C. Cheng,et al.  Real-time specification patterns , 2005, Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005..

[28]  Daniel Bundala On the Complexity of Temporal-Logic Path Checking , 2014, ICALP.

[29]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[30]  Pierre Wolper,et al.  Reasoning about infinite computation paths , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[31]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[32]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[33]  Christel Baier,et al.  When Are Timed Automata Determinizable? , 2009, ICALP.

[34]  Grigore Rosu,et al.  Monitoring Algorithms for Metric Temporal Logic Specifications , 2004, RV@ETAPS.

[35]  Jean-Camille Birget State-complexity of finite-state devices, state compressibility and incompressibility , 2005, Mathematical systems theory.

[36]  Christian Dax,et al.  On regular temporal logics with past , 2010, Acta Informatica.

[37]  Dana Fisman,et al.  Reasoning with Temporal Logic on Truncated Paths , 2003, CAV.

[38]  Dejan Nickovic,et al.  Real Time Temporal Logic: Past, Present, Future , 2005, FORMATS.

[39]  Paul Hunter When is Metric Temporal Logic Expressively Complete? , 2013, CSL.

[40]  Martin Leucker,et al.  A brief account of runtime verification , 2009, J. Log. Algebraic Methods Program..

[41]  Slawomir Lasota,et al.  Alternating timed automata , 2008, TOCL.

[42]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[43]  Deepak D'Souza,et al.  On Timed Automata with Input-Determined Guards , 2004, FORMATS/FTRTFT.

[44]  Tim French,et al.  Verifying Temporal Properties in Real Models , 2013, LPAR.

[45]  Joël Ouaknine,et al.  Some Recent Results in Metric Temporal Logic , 2008, FORMATS.

[46]  Joël Ouaknine,et al.  The Cost of Punctuality , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[47]  D. Peled,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1 , 1995 .

[48]  Jianwei Niu,et al.  Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic , 2012, RV.

[49]  Thomas A. Henzinger,et al.  Back to the future: towards a theory of timed regular languages , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[50]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[51]  Bowen Alpern,et al.  Recognizing safety and liveness , 2005, Distributed Computing.

[52]  Jan-Christoph Küster,et al.  From Propositional to First-Order Monitoring , 2013, RV.

[53]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[54]  Cnrs Fre,et al.  Model Checking a Path (Preliminary Report) , 2003 .

[55]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[56]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[57]  Paul Gastin,et al.  LTL with Past and Two-Way Very-Weak Alternating Automata , 2003, MFCS.

[58]  Temporal Logic, Automata, and Classical Theories -- An Introduction , 1994 .

[59]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[60]  Thomas A. Henzinger,et al.  What Good Are Digital Clocks? , 1992, ICALP.

[61]  Rajeev Alur,et al.  Decision Problems for Timed Automata: A Survey , 2004, SFM.

[62]  Deepak D'Souza,et al.  On the Expressiveness of MTL with Past Operators , 2006, FORMATS.

[63]  Stavros Tripakis,et al.  Fault Diagnosis for Timed Automata , 2002, FTRTFT.

[64]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[65]  Dejan Nickovic,et al.  From Mtl to Deterministic Timed Automata , 2010, FORMATS.

[66]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[67]  Bernd Finkbeiner,et al.  Monitor Circuits for LTL with Bounded and Unbounded Future , 2009, RV.

[68]  Felix Klaedtke,et al.  Algorithms for monitoring real-time properties , 2011, Acta Informatica.

[69]  Joël Ouaknine,et al.  Expressive Completeness for Metric Temporal Logic , 2012, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[70]  Dejan Nickovic,et al.  Monitoring Temporal Properties of Continuous Signals , 2004, FORMATS/FTRTFT.

[71]  Grigore Rosu,et al.  On Safety Properties and Their Monitoring , 2012, Sci. Ann. Comput. Sci..

[72]  Insup Lee,et al.  Introduction to the special section on runtime verification , 2012, International Journal on Software Tools for Technology Transfer.

[73]  Grigore Rosu,et al.  Testing Linear Temporal Logic Formulae on Finite Execution Traces , 2001 .

[74]  Amir Pnueli,et al.  The Glory of the Past , 1985, Logic of Programs.

[75]  Martin Leucker,et al.  Runtime Verification for LTL and TLTL , 2011, TSEM.

[76]  Orna Kupferman,et al.  Model Checking of Safety Properties , 1999, Formal Methods Syst. Des..

[77]  Bernd Finkbeiner,et al.  LTL Path Checking Is Efficiently Parallelizable , 2009, ICALP.

[78]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.