KP hierarchy for Hodge integrals

Abstract Starting from the ELSV formula, we derive a number of new equations on the generating functions for Hodge integrals over the moduli space of complex curves. This gives a new simple and uniform treatment of certain known results on Hodge integrals like Witten's conjecture, Virasoro constrains, Faber's λ g -conjecture, etc. Among other results we show that a properly arranged generating function for Hodge integrals satisfies the equations of the KP hierarchy.

[1]  D. Zvonkine,et al.  Changes of variables in ELSV-type formulas , 2006, math/0602457.

[2]  I. Goulden,et al.  A short proof of the λg -conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves , 2009 .

[3]  Two-Dimensional Gravity and Intersection Theory on Moduli Space , 1993 .

[4]  David Mumford,et al.  Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .

[5]  Michio Jimbo,et al.  Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras , 2000 .

[6]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[7]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[8]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[9]  I. Goulden,et al.  Transitive factorisations into transpositions and holomorphic mappings on the sphere , 1997 .

[10]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[11]  A. Okounkov,et al.  Gromov-Witten theory, Hurwitz numbers, and Matrix models, I , 2001, math/0101147.

[12]  I. Goulden,et al.  The Gromov–Witten Potential of A Point, Hurwitz Numbers, and Hodge Integrals , 1999, math/9910004.

[13]  R. Pandharipande,et al.  Hodge integrals and Gromov-Witten theory , 1998 .

[14]  S. Lando,et al.  An algebro-geometric proof of Witten's conjecture , 2006, math/0601760.

[15]  V. Kac,et al.  Geometric interpretation of the partition function of 2D gravity , 1991 .

[16]  A. Okounkov Toda equations for Hurwitz numbers , 2000, math/0004128.

[17]  A. Vainshtein,et al.  Hurwitz numbers and intersections on moduli spaces of curves , 2000, math/0004096.