Eulerian tour algorithms for data visualization and the PairViz package

PairViz is an R package that produces orderings of statistical objects for visualization purposes. We abstract the ordering problem to one of constructing edge-traversals of (possibly weighted) graphs. PairViz implements various edge traversal algorithms which are based on Eulerian tours and Hamiltonian decompositions. We describe these algorithms, their PairViz implementation and discuss their properties and performance. We illustrate their application to two visualization problems, that of assessing rater agreement, and model comparison in regression.

[1]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[2]  J. J. Gilbert,et al.  Sleep in Mammals : Ecological and Constitutional Correlates , 2007 .

[3]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[4]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[5]  Michael Friendly,et al.  Effect ordering for data displays , 2003, Comput. Stat. Data Anal..

[6]  Paul H. Harvey,et al.  Sleep in mammals , 1988, Animal Behaviour.

[7]  Heike Hofmann,et al.  Graphics of Large Datasets: Visualizing a Million , 2006 .

[8]  Robert L. Grossman,et al.  Graph-Theoretic Scagnostics , 2005, INFOVIS.

[9]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[10]  Catherine B. Hurley,et al.  Graphs as navigational infrastructure for high dimensional data spaces , 2011, Comput. Stat..

[11]  Martin Theus,et al.  Interactive Data Visualization using Mondrian , 2002 .

[12]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[13]  Catherine B. Hurley,et al.  Pairwise Display of High-Dimensional Information via Eulerian Tours and Hamiltonian Decompositions , 2010 .

[14]  Jean-Claude Bermond,et al.  Decomposition into Cycles I: Hamilton Decompositions , 1990 .

[15]  Catherine B. Hurley,et al.  Clustering Visualizations of Multidimensional Data , 2004 .

[16]  Heike Hofmann Multivariate Categorical Data — Mosaic Plots , 2006 .

[17]  Robert E. Woodrow,et al.  Cycles and rays , 1990 .

[18]  I. Ntzoufras Gibbs Variable Selection using BUGS , 2002 .

[19]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[20]  C. Hierholzer,et al.  Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren , 1873 .

[21]  Helwig Hauser,et al.  Parallel Sets: Visual Analysis of Categorical Data , 2005, INFOVIS.

[22]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[23]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[24]  Chris Volinsky,et al.  Parallel coordinates for exploratory modelling analysis , 2003, Comput. Stat. Data Anal..