CO2 capture by electrothermal swing adsorption with activated carbon fibre materials

Abstract This paper presents progress made in CO2 capture by electrothermal swing adsorption (ESA) with activated carbon fibre materials. The current barrier in CO2 capture and storage is the high cost of CO2 separation and capture. CO2 capture by electrothermal swing adsorption can potentially be more energy-effective than conventional temperature swing adsorption (TSA) and pressure swing adsorption (PSA), thus reduces CO2 capture cost. Activated carbon fibre materials have been utilised as the adsorbents due to their demonstrated capabilities for CO2 capture and their good electrical conductivity. This paper reviews the major results in the literature in the development of activated carbon fibre materials and the process of ESA. It also suggests future research directions in CO2 capture by electrothermal swing adsorption.

[1]  F. Kapteijn,et al.  CARBON-BASED MONOLITHIC STRUCTURES , 2001 .

[2]  D. Cazorla-Amorós,et al.  Characterization of Activated Carbon Fibers by CO 2 Adsorption , 1996 .

[3]  T. Burchell CHAPTER 6 – Porous Carbon Fiber-Carbon Binder Composites , 1999 .

[4]  Timothy D. Burchell,et al.  A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures , 1997 .

[5]  A. Mitropoulos,et al.  High pressure gas permeability of microporous carbon membranes , 1997 .

[6]  W. Yuan,et al.  Redistribution of adsorbed VOCs in activated carbon under electrothermal desorption , 2002 .

[7]  P. Le Cloirec,et al.  VOLATILE ORGANIC COMPOUND (VOC) REMOVAL BY ADSORPTION ONTO ACTIVATED CARBON FIBER CLOTH AND ELECTROTHERMAL DESORPTION: AN INDUSTRIAL APPLICATION , 2006 .

[8]  H. Tamon,et al.  Mesoporous Activated Carbons from Phenolic Resins , 2007 .

[9]  L. Luo,et al.  Electrothermal Desorption Using Joule Effect on an Activated Carbon Monolith , 2004 .

[10]  D. Cazorla-Amorós,et al.  Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres , 1994 .

[11]  Mark J. Rood,et al.  Adsorption and Electrothermal Desorption of Hazardous Organic Vapors , 2001 .

[12]  M. Rood,et al.  Organic vapor recovery and energy efficiency during electric regeneration of an activated carbon fiber cloth adsorber , 2004 .

[13]  Christian L. Mangun,et al.  Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers , 1998 .

[14]  François Béguin,et al.  Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons , 2006 .

[15]  R. Judkins,et al.  A novel carbon fiber based material and separation technology , 1996 .

[16]  P. A. Barnes,et al.  A study of evolved gas control and its effect on carbon yield during the activation of carbon fibres by controlled rate methods , 2002 .

[17]  Timothy D. Burchell,et al.  Carbon materials for advanced technologies , 1999 .

[18]  S. Larson,et al.  Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers , 1992 .

[19]  G. Grévillot,et al.  Temperature-swing gas separation with electrothermal desorption step , 1991 .

[20]  Marit Jagtoyen,et al.  Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors , 2001 .

[21]  Roberto Carapellucci,et al.  Membrane systems for CO2 capture and their integration with gas turbine plants , 2003 .

[22]  P. L. Cloirec,et al.  La regeneration par echauffement intrinseque, de charbons actifs utiuses pour le traitement d'air , 1992 .

[23]  Paul Feron,et al.  CO2 Capture Process Principles and Costs , 2005 .

[24]  L. Luo,et al.  Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies , 2006 .

[25]  G. Qiao,et al.  Controlling carbon microporosity: the structure of carbons obtained from different phenolic resin precursors , 2002 .

[26]  Dolores Lozano-Castelló,et al.  Advances in the study of methane storage in porous carbonaceous materials , 2002 .

[27]  S. Tennison Phenolic-resin-derived activated carbons , 1998 .

[28]  G. C. Wei,et al.  Carbon-bonded carbon fiber insulation for radioisotope space power systems , 1985 .

[29]  G. Marbán,et al.  Dry formation of low-density Nomex™ rejects-based activated carbon fiber composites , 2000 .

[30]  L. Luo,et al.  Electrothermal swing adsorption of toluene on an activated carbon monolith Experiments and parametric theoretical study , 2007 .

[31]  P. Carrott,et al.  Preparation of activated carbon fibres from acrylic textile fibres , 2001 .

[32]  A. Ōya,et al.  Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt , 1995 .

[33]  I. Chung,et al.  The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites , 2000 .

[34]  Y. Gensterblum,et al.  High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals , 2002 .

[35]  D. Cazorla-Amorós,et al.  CO2 As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons , 1998 .

[36]  P. Cloirec,et al.  Adsorption onto Activated Carbon Cloths and Electrothermal Regeneration: Its Potential Industrial Applications , 2004 .

[37]  Andreas Busch,et al.  Flue gas and pure CO2 sorption properties of coal: A comparative study , 2006 .

[38]  G. Marbán,et al.  Preparation of microporous carbon–ceramic cellular monoliths , 2001 .

[39]  A. B. Fuertes,et al.  Preparation of supported asymmetric carbon molecular sieve membranes , 1998 .

[40]  L. Luo,et al.  Adsorption Isotherms of VOCs onto an Activated Carbon Monolith: Experimental Measurement and Correlation with Different Models , 2002 .

[41]  Matthew J. Chinn,et al.  Electrical Swing Regenerable Filtration Using Carbon Fibre Composites and Carbon Monoliths , 2004 .

[42]  Seung-Hyun Moon,et al.  A novel process for CO2/CH4 gas separation on activated carbon fibers--electric swing adsorption. , 2006, Journal of colloid and interface science.

[43]  F. Kang,et al.  Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution , 2002 .

[44]  Alírio E. Rodrigues,et al.  Electric Swing Adsorption for CO2 removal from flue gases , 2007 .

[45]  G. Marbán,et al.  Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths , 2003 .

[46]  R. Andrews,et al.  PAN-based activated carbon fiber composites for sulfur dioxide conversion: influence of fiber activation method , 2001 .

[47]  P. Cloirec,et al.  Electrical behaviour of activated carbon cloth heated by the joule effect: desorption application , 2001 .

[48]  K. Gadkaree Carbon honeycomb structures for adsorption applications , 1998 .

[49]  S. Su,et al.  Post combustion CO2 capture by carbon fibre monolithic adsorbents , 2009 .

[50]  D. Lozano‐Castelló,et al.  Activated carbon monoliths for methane storage: influence of binder , 2002 .

[51]  Alírio E. Rodrigues,et al.  Adsorption of Off‐Gases from Steam Methane Reforming (H2, CO2, CH4, CO and N2) on Activated Carbon , 2008 .

[52]  Timothy D. Burchell,et al.  Passive CO2 removal using a carbon fiber composite molecular sieve , 1996 .

[53]  Sam Wong,et al.  Carbon Dioxide Separation Technologies , 2002 .

[54]  Haeshin Lee,et al.  The effect of carbonization temperature of PAN fiber on the properties of activated carbon fiber composites , 1997 .