Tracking Uncertainty in a Spatially Explicit Susceptible-Infected Epidemic Model

In this paper we conceive an interval-valued continuous cellular automaton for describing the spatio-temporal dynamics of an epidemic, in which themagnitude of the initial outbreak and/or the epidemic properties are only imprecisely known. In contrast to well-established approaches that rely on probability distributions for keeping track of the uncertainty in spatio-temporal models, we resort to an interval representation of uncertainty. Such an approach lowers the amount of computing power that is needed to run model simulations, and reduces the need for data that are indispensable for constructing the probability distributions upon which other paradigms are based.

[1]  Shih Ching Fu,et al.  Epidemic Modelling Using Cellular Automata , 2003 .

[2]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[3]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[4]  L. D. de Pillis,et al.  A cellular automata model of tumor-immune system interactions. , 2006, Journal of theoretical biology.

[5]  James D. Murray,et al.  Spatial models and biomedical applications , 2003 .

[6]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[7]  X. Zheng,et al.  A cellular automaton model of cancerous growth. , 1993, Journal of theoretical biology.

[8]  J J Heijnen,et al.  Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. , 1998, Biotechnology and bioengineering.

[9]  D. Griffeath,et al.  Quantitative cellular automaton model for biofilms , 2001 .

[10]  Joel L. Schiff,et al.  Cellular Automata: A Discrete View of the World (Wiley Series in Discrete Mathematics & Optimization) , 2007 .

[11]  L. Kier,et al.  Cellular automata modeling of chemical systems : a textbook and laboratory manual , 2005 .

[12]  Bernard De Baets,et al.  Continuous cellular automata on irregular tessellations: Mimicking steady-state heat flow , 2010, 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC).

[13]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[14]  Ruth J. Doran,et al.  Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model. , 2005, Preventive veterinary medicine.

[15]  Ángel Martín del Rey,et al.  Modeling epidemics using cellular automata , 2006, Applied Mathematics and Computation.

[16]  J. J. Abellán,et al.  Methodologic Issues and Approaches to Spatial Epidemiology , 2008, Environmental health perspectives.

[17]  Michael Oberguggenberger,et al.  Differential Equations With Fuzzy Parameters , 1999 .

[18]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[19]  V. Lakshmikantham,et al.  Theory of Fuzzy Differential Equations and Inclusions , 2003 .

[20]  Simon Cauchemez,et al.  Managing and reducing uncertainty in an emerging influenza pandemic. , 2009, The New England journal of medicine.

[21]  Bernard De Baets,et al.  Cellular automata on irregular tessellations , 2012 .

[22]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[23]  Heiko Balzter,et al.  Cellular automata models for vegetation dynamics , 1998 .

[24]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[25]  金子 邦彦 Theory and applications of coupled map lattices , 1993 .