D-orientation sequences for continuous functions and nonlinear complementarity problems

We introduce the new concept of d-orientation sequence for continuous functions. It is shown that if there does not exist a d-orientation sequence for a continuous function, then the corresponding complementarity problem (CP) has a solution. We believe that such a result characterizes an intrinsic property of CPs. As the concept of ''exceptional family of elements'', the notion of ''d-orientation sequence of a function'' is also a powerful tool for investigating the existence theorems of CPs. We use this new tool to establish, among other things, a new existence result for a class of P"*-mapping CPs.

[1]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[2]  S. Karamardian,et al.  The complementarity problem , 1972, Math. Program..

[3]  Tony E. Smith,et al.  A solution condition for complementarity problems: with an application to spatial price equilibrium , 1984 .

[4]  S. Karamardian Generalized complementarity problem , 1970 .

[5]  Nimrod Megiddo A monotone complementarity problem with feasible solutions but no complementary solutions , 1977, Math. Program..

[6]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[7]  The variational inequalities , 1993 .

[8]  Jianming Miao A quadratically convergent $$O((\kappa + 1)\sqrt n L)$$ -iteration algorithm for theP*(κ)-matrix linear complementarity problem , 1995, Math. Program..

[9]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[10]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[11]  Tamás Terlaky,et al.  Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems , 1997, Math. Program..

[12]  Houduo Qi,et al.  Exceptional Families and Existence Theorems for Variational Inequality Problems , 1999 .

[13]  Jun Ji,et al.  A predictor-corrector method for solving the P*(k)-matrix lcp from infeasible starting points , 1995 .

[14]  M. Kostreva,et al.  On a Direct Algorithm for Nonlinear Complementarity Problems , 1978 .

[15]  Yun-Bin Zhao,et al.  Exceptional families and finite-dimensional variational inequalities over polyhedral convex sets , 1997 .

[16]  J. J. Moré Coercivity Conditions in Nonlinear Complementarity Problems , 1974 .

[17]  Marco Muselli,et al.  A Theoretical Approach to Restart in Global Optimization , 1997, J. Glob. Optim..

[18]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[19]  G. Isac Complementarity Problems , 1992 .

[20]  Jen-Chih Yao,et al.  Pseudo-monotone complementarity problems in Hilbert space , 1992 .

[21]  M. Gowda,et al.  Operators of class $(S)^1_{+}$, Altman's condition and the complementarity problem , 1993 .

[22]  H. Väliaho,et al.  P∗-matrices are just sufficient , 1996 .

[23]  George Isac,et al.  Functions Without Exceptional Family of Elements and Complementarity Problems , 1998 .

[24]  Yunbin Zhao,et al.  Exceptional Family of Elements for a Variational Inequality Problem and its Applications , 1999, J. Glob. Optim..

[25]  Jen-Chih Yao,et al.  On the equivalence of nonlinear complementarity problems and least-element problems , 1995, Math. Program..

[26]  Jorge J. Moré,et al.  Classes of functions and feasibility conditions in nonlinear complementarity problems , 1974, Math. Program..

[27]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[28]  Vyacheslav Kalashnikov,et al.  Exceptional Families, Topological Degree and Complementarity Problems , 1997, J. Glob. Optim..

[29]  Jianwei Han,et al.  Two Interior-Point Methods for Nonlinear P*(τ)-Complementarity Problems , 1999 .

[30]  Siegfried Schaible,et al.  Quasimonotone variational inequalities in Banach spaces , 1996 .

[31]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[32]  Florian A. Potra,et al.  Predictor-corrector algorithm for solvingP*(κ)-matrix LCP from arbitrary positive starting points , 1996, Math. Program..

[33]  S. Karamardian An existence theorem for the complementarity problem , 1976 .

[34]  H. Väliaho,et al.  Determining the handicap of a sufficient matrix , 1997 .