Measurement of Cortical Thickness Using an Automated 3-D Algorithm: A Validation Study

A validation study was conducted to assess the accuracy of the algorithm developed by MacDonald et al. (1999) for measuring cortical thickness. This algorithm automatically determines the cortical thickness by 3-D extraction of the inner and outer surfaces of the cerebral cortex from an MRI scan. A manual method of tagging the grey-csf and grey-white interface was used on 20 regions (10 cortical areas found in each hemisphere) in 40 MRIs of the brain to validate the algorithm. The regions were chosen throughout the cortex to get broad assessment of the algorithm's performance. Accuracy was determined by an anatomist tagging the csf-grey and grey-white borders of selected gyri and by allowing the algorithm to determine the csf-grey and grey-white borders and the corresponding cortical thickness of the same region. Results from the manual and automatic methods were statistically compared using overall ANOVA and paired t tests for each region. The manual and automatic methods were in agreement for all but 4 of the 20 regions tested. The four regions where there were significant differences between the two methods were the insula left and right, the right cuneus, and the right parahippocampus. We conclude that the automatic algorithm is valid for most of the cortex and provides a viable alternative to manual methods of determining cortical thickness in vivo. However, caution should be taken when measuring the regions mentioned previously where the results of the algorithm can be biased by surrounding grey structures.

[1]  Britt Anderson,et al.  Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein , 1996, Neuroscience Letters.

[2]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[3]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[4]  H. Haug,et al.  The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. , 1984, Journal fur Hirnforschung.

[5]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[6]  Alan C. Evans,et al.  Automatic Quantification of Multiple Sclerosis Lesion Volume Using Stereotaxic Space , 1996, VBC.

[7]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[8]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[9]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[10]  M. Hofman On the evolution and geometry of the brain in mammals , 1989, Progress in Neurobiology.

[11]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[12]  Michel A. Hofman,et al.  Size and Shape of the Cerebral Cortex in Mammals (Part 1 of 2) , 1985 .