The complete DNA sequence of yeast chromosome III

The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.

B. Dujon | S. Oliver | Q. V. D. Aart | M. L. Agostoni-Carbone | M. Aigle | L. Alberghina | D. Alexandraki | G. Antoine | R. Anwar | J. Ballesta | P. Bénit | G. Berben | E. Bergantino | N. Biteau | P. Bolle | M. Bolotin-Fukuhara | A. Brown | J. Buhler | C. Carcano | G. Carignani | H. Cederberg | R. Chanet | R. Contreras | M. Crouzet | B. Daignan-Fornier | E. Defoor | M. Delgado | J. Demolder | C. Doira | E. Dubois | A. Dusterhoft | D. Erdmann | M. Esteban | F. Fabre | C. Fairhead | G. Faye | H. Feldmann | W. Fiers | M. C. Francingues-Gaillard | L. Franco | L. Frontali | H. Fukuhara | L. J. Fuller | P. Galland | M. E. Gent | D. Gigot | V. Gilliquet | N. Glansdorff | A. Goffeau | M. Grenson | P. Grisanti | L. Grivell | M. D. Haan | M. Haasemann | D. Hatat | J. Hoenicka | J. Hegemann | C. Herbert | F. Hilger | S. Hohmann | C. Hollenberg | K. Huse | F. Iborra | K. J. Indje | K. Isono | C. Jacq | M. Jacquet | C. James | J. Jauniaux | Y. Jia | A. Jiménez | A. Kelly | U. Kleinhans | P. Kreisl | G. Lanfranchi | C. Lewis | C. Vanderlinden | G. Lucchini | K. Lutzenkirchen | M. J. Maat | L. Mallet | G. Mannhaupet | E. Martegani | A. Mathieu | C. Maurer | D. McConnell | R. McKee | F. Messenguy | H. Mewes | F. Molemans | M. Montague | M. Falconi | L. Navas | C. Newlon | D. Noone | C. Pallier | L. Panzeri | B. Pearson | J. Perea | P. Philippsen | A. Piérard | R. Planta | P. Plevani | B. Poetsch | F. Pohl | B. Purnelle | M. R. Rad | S. W. Rasmussen | A. Raynal | M. Remacha | P. Richterich | A. B. Roberts | F. Rodriguez | E. Sanz | I. Schaaff-Gerstenschlager | B. Scherens | B. Schweitzer | Y. Shu | J. Skała | P. Slonimski | F. Sor | C. Soustelle | R. Spiegelberg | L. Stateva | H. Y. Steensma | S. Steiner | A. Thierry | G. Thireos | M. Tzermia | L. Urrestarazu | G. Valle | I. Vetter | J. C. V. Vliet-Reedijk | M. Voet | G. Volckaert | P. Vreken | H. Wang | J. Warmington | D. Wettstein | B. Wicksteed | C. Wilson | H. Wurst | G. Xu | A. Yoshikawa | F. Zimmermann | J. Sgouros | A. Düsterhöft | S. Hohmann | W. Fiers | A. Roberts | C. J. Herbert | A. Brown | A. Brown | G. Xu | M. Francingues‐Gaillard | Barton L. Wicksteed | G. Xu | M. Bolotin‐Fukuhara | Anthony G. A. Brown | Glansdorff Nn | M. Haan | P. Bénit | Aki Roberts

[1]  A. H. Cook The chemistry and biology of yeasts. , 1959 .

[2]  C. Newlon,et al.  Yeast chromosomal DNA: size, structure, and replication. , 1974, Cold Spring Harbor symposia on quantitative biology.

[3]  H. Feldman Arangement of transfer-RNA -genes in yeast. , 1976, Nucleic acids research.

[4]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. W. Davis,et al.  Isolation and characterisation of a yeast chromosomal replicator , 1979, Nature.

[6]  C. Newlon,et al.  Isolation of a circular derivative of yeast chromosome III: implications for the mechanism of mating type interconversion , 1979, Cell.

[7]  W. Gilbert,et al.  Sequencing end-labeled DNA with base-specific chemical cleavages. , 1980, Methods in enzymology.

[8]  John Carbon,et al.  Isolation of a yeast centromere and construction of functional small circular chromosomes , 1980, Nature.

[9]  J. Broach,et al.  The Molecular biology of the yeast Saccharomyces : metabolism and gene expression , 1982 .

[10]  H. Feldmann,et al.  Ty1 and delta elements occur adjacent to several tRNA genes in yeast. , 1982, The EMBO journal.

[11]  Jack W. Szostak,et al.  Cloning yeast telomeres on linear plasmid vectors , 1982, Cell.

[12]  R. Rothstein One-step gene disruption in yeast. , 1983, Methods in enzymology.

[13]  M. Olson,et al.  Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. , 1984, Nucleic acids research.

[14]  G. Roeder,et al.  Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae , 1984, Cell.

[15]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[16]  T. Cooper,et al.  Tau, sigma, and delta. A family of repeated elements in yeast. , 1984, The Journal of biological chemistry.

[17]  P. L. Deininger,et al.  DNA sequence and expression of the B95-8 Epstein—Barr virus genome , 1984, Nature.

[18]  C. Newlon,et al.  Nucleotide sequence characterization of Ty 1-17, a class II transposon from yeast. , 1985, Nucleic acids research.

[19]  Stephen M. Mount,et al.  Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins , 1985, Molecular and cellular biology.

[20]  Y. Sahashi,et al.  The PET18 locus of Saccharomyces cerevisiae: A complex locus containing multiple genes , 1985, Yeast.

[21]  M. Pedersen DNA sequence polymorphisms in the genus saccharomyces III. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains , 1986 .

[22]  M. Olson,et al.  Random-clone strategy for genomic restriction mapping in yeast. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. A. Scheffers,et al.  Orthogonal‐field‐alternation gel electrophoresis banding patterns of DNA from yeasts , 1986, Yeast.

[24]  C. Astell,et al.  The Saccharomyces cerevisiae chromosome III left telomere has a type X, but not a type Y', ARS region , 1986, Molecular and cellular biology.

[25]  J R Johnston,et al.  Genealogy of principal strains of the yeast genetic stock center. , 1986, Genetics.

[26]  M. Goebl,et al.  Most of the yeast genomic sequences are not essential for cell growth and division , 1986, Cell.

[27]  M. Olson,et al.  Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. , 1987, Science.

[28]  I. Yahara,et al.  A yeast gene coding for a putative protein kinase homologous to cdc25 suppressing protein kinase , 1987, FEBS letters.

[29]  C. Newlon,et al.  Polymorphisms on the right arm of yeast chromosome III associated with Ty transposition and recombination events. , 1987, Nucleic acids research.

[30]  J. Thompson,et al.  Structure and expression of the Saccharomyces cerevisiae CRY1 gene: a highly conserved ribosomal protein gene , 1987, Molecular and cellular biology.

[31]  A. Rump,et al.  Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. , 1988, Journal of molecular biology.

[32]  C. Newlon Yeast chromosome replication and segregation , 1988, Microbiological reviews.

[33]  L. Symington,et al.  Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III , 1988, Molecular and cellular biology.

[34]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Albert Spielmann,et al.  Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics , 1989, Nature.

[36]  J A Kans,et al.  Genetic map of Saccharomyces cerevisiae, edition 10 , 1989, Yeast.

[37]  R. Haselkorn,et al.  Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon. , 1989, The Journal of biological chemistry.

[38]  New technologies for large-genome sequencing. , 1989, Genome.

[39]  H. Feldmann,et al.  Ty4, a novel low-copy number element in Saccharomyces cerevisiae: one copy is located in a cluster of Ty elements and tRNA genes. , 1989, Nucleic acids research.

[40]  H. Y. Steensma,et al.  Enhanced meiotic recombination on the smallest chromosome of Saccharomyces cerevisiae. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Isono,et al.  Chromosome III of Saccharomyces cerevisiae: An ordered clone bank, a detailed restriction map and analysis of transcripts suggest the presence of 160 genes , 1990, Yeast.

[42]  C. Herbert,et al.  III. Yeast sequencing reports. The complete sequence of the unit YCR59, situated between CRY1 and MAT, reveals two long open reading frames, which cover 91% of the 10·1 kb segment , 1991, Yeast.

[43]  M V Olson,et al.  Physical map of the Saccharomyces cerevisiae genome at 110-kilobase resolution. , 1991, Genetics.

[44]  D. Voytas,et al.  A superfamily of Arabidopsis thaliana retrotransposons. , 1991, Genetics.

[45]  P. Sharp,et al.  Synonymous codon usage in Saccharomyces cerevisiae , 1991, Yeast.

[46]  C. Newlon,et al.  Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. , 1991, Genetics.

[47]  I. Mauri,et al.  The sequence of 8·8 kb of yeast chromosome III cloned in lambda PM3270 contains an unusual long ORF (YCR601) , 1991, Yeast.