Theoretical aspects of the magnetocaloric effect
暂无分享,去创建一个
[1] K. Gschneidner,et al. Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .
[2] O. Gutfleisch,et al. Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons , 2005 .
[3] Vitalij K. Pecharsky,et al. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .
[4] V. Amaral,et al. Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials , 2004 .
[5] J. D. Childress. Application of a Ferroelectric Material in an Energy Conversion Device , 1962 .
[6] H. Ohno,et al. Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor , 2003, Science.
[7] Y. Li,et al. Magnetic properties and magnetic entropy change of amorphous and crystalline GdNiAl ribbons , 2002 .
[8] B. Teng,et al. A phenomenological description of the first-order transition in the Gd5(SixGe1−x)4(0.24≤x≤0.5) alloys , 2002 .
[9] T. Strässle,et al. Magnetic cooling by the application of external pressure in rare-earth compounds , 2003 .
[10] S. Khmelevskyi,et al. The order of the magnetic phase transitions in RCo2 (R = rare earth) intermetallic compounds , 2000 .
[11] S. Gama,et al. Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd5(SixGe1−x)4 , 2004 .
[12] M. Balli,et al. Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound , 2009 .
[13] L. Mañosa,et al. Change in entropy at a first-order magnetoelastic phase transition: Case study of Gd5(SixGe1−x)4 giant magnetocaloric alloys , 2003 .
[14] N. Q. Hoa,et al. The discovery of the colossal magnetocaloric effect in a series of amorphous ribbons based on Finemet , 2007 .
[15] O. Tatsenko,et al. Crossover in the Van Vleck paramagnet TmPO4 , 2003 .
[16] Vitalij K. Pecharsky,et al. Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys , 2001 .
[17] A. Tishin. Magnetocaloric effect : Current situation and future trends , 2007 .
[18] F. Altorfer,et al. HoAs: a model compound for the cooling by the barocaloric effect , 2001 .
[19] H. Sugawara,et al. Magnetocaloric effects of Laves phase Er(Co1−xNix)2 compounds , 2001 .
[20] P. Ranke,et al. Monte Carlo calculations of the magnetocaloric effect in RAl2 (R=Dy,Er) , 2006 .
[21] F. D. Boer,et al. Tuning of the magneto-caloric effects in MnFe(P,As) by substitution of elements , 2004 .
[22] R. Sarthour,et al. Influence of the crystalline electrical field on the magnetocaloric effect in the series RNi 2 (R=Pr, Nd, Gd, Tb, Ho, Er) , 2001 .
[23] Vitalij K. Pecharsky,et al. Electron correlation effects on the magnetostructural transition and magnetocaloric effect inGd5Si2Ge2 , 2006 .
[24] C. Shek,et al. Preparation of nanocomposite working substances for room-temperature magnetic refrigeration , 1996 .
[25] K. Yosida,et al. Magnetic Properties of Cu-Mn Alloys , 1957 .
[26] S. Doniach,et al. A quantum approach to the solid state , 1970 .
[27] Functional integral approach to the magnetic properties of Laves phase intermetallics , 1992 .
[28] P. Algarabel,et al. Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .
[29] A. Tishin. Magnetocaloric effect in strong magnetic fields , 1990 .
[30] N. D. Mathur,et al. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.
[31] N. Oliveira. Magnetocaloric effect in rare earth doped compounds , 2008 .
[32] W. Giauque. A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .
[33] The magnetocaloric effect in R5Si4 (R = Gd, Tb): a Monte Carlo calculation , 2006 .
[34] S. Gama,et al. Calculation of the giant magnetocaloric effect in the MnFeP 0.45 As 0.55 compound , 2004 .
[35] C. P. Bean,et al. Magnetic Disorder as a First-Order Phase Transformation , 1962 .
[36] Y. Akishige,et al. Giant magnetocaloric effect of MnAs1-xSbx in the vicinity of first-order magnetic transition , 2003 .
[37] Xiangzhao Meng,et al. Review on research of room temperature magnetic refrigeration , 2003 .
[38] R. Shull,et al. Amorphous-FeCoCrZrB ferromagnets for use as high-temperature magnetic refrigerants , 2006 .
[39] T. Shen,et al. Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy , 2002 .
[40] K. Gschneidner,et al. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .
[41] K. Stevens. Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .
[42] W. A. Steyert. Stirling‐cycle rotating magnetic refrigerators and heat engines for use near room temperature , 1978 .
[43] T. Goto,et al. Magnetic properties of MnAs0.7Sb0.3 under high pressure: Comparison with the magnetic moment calculated for MnAs with the NiAs-type structure , 2001 .
[44] Young,et al. Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5(Si2Ge2) , 2000, Physical review letters.
[45] H. Purwins. Single crystal preparation and crystalline electric field parameters of ErAl2 , 1970 .
[46] K. Buschow,et al. Magnetic Anisotropy and Conduction-Electron Exchange Polarization in Ferromagnetic (Rare-Earth) Al 2 Compounds , 1973 .
[47] D. Gignoux,et al. Magnetic properties of single crystals of Gd Co 2 , Ho Ni 2 , and Ho Co 2 , 1975 .
[48] S. Gama,et al. Theoretical investigations on giant magnetocaloric effect in MnAs1−xSbx , 2004 .
[49] P. Ranke,et al. Monte Carlo calculations of the magnetocaloric effect inGd5(SixGe1−x)4compounds , 2005 .
[50] K. Gschneidner,et al. Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.
[51] N. Duc,et al. Magnetocaloric effects in RCo2 compounds , 2002 .
[52] Richard Chahine,et al. Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .
[53] Vitalij K. Pecharsky,et al. Advanced magnetocaloric materials: What does the future hold? , 2006 .
[54] P. Ranke,et al. Monte Carlo calculations of the magnetocaloric effect in (Gd0.6Tb0.4)5Si4(Gd0.6Tb0.4)5Si4 , 2007 .
[55] N. Singh,et al. Effect of Tm substitution on the magnetic and magnetocaloric properties in the intermetallic compounds (Tb1−xTmx)Co2 , 2007 .
[56] N. Singh,et al. Measurement of pressure effects on the magnetic and the magnetocaloric properties of the intermetallic compounds DyCo2 and Er(Co1−xSix)2 , 2006, cond-mat/0608191.
[57] A. F. Devonshire. XCVI. Theory of barium titanate , 1949 .
[58] H. Rakoto,et al. Anomalous magnetocaloric effect in van vleck paramagnet HoVO4 near energy level crossing , 2008 .
[59] A. Guimarães,et al. Anomaly in the magnetocaloric effect in the intermetallic compound DyAl 2 , 2000 .
[60] X. Bohigas,et al. Giant and time-dependent magnetocaloric effect in high-spin molecular magnets , 2000, cond-mat/0011384.
[61] Effect of Fe-substitution on microstructure, hysteresis behaviour and magnetocaloric effect in Gd5Si2Ge2 Alloys , 2009 .
[62] J. Herrero‐Albillos,et al. Nature and entropy content of the ordering transitions in RCo2 , 2006 .
[63] A. Thompson,et al. Low temperature heat capacities of laves phase lanthanide-aluminum compounds* , 1971 .
[64] K. Gschneidner,et al. Anomalous behavior of the magnetic entropy in PrNi{sub 5} , 1998 .
[65] T. Lograsso,et al. Magnetic properties of single-crystal DyAl2 , 2005 .
[66] V. Barthem,et al. Magnetic properties of the hexagonal NdNi5 and NdCu5 compounds , 1989 .
[67] O. Gutfleisch,et al. Large magnetocaloric effect in melt-spun LaFe13−xSix , 2005 .
[68] P. Švec,et al. A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe∕B ratios , 2007 .
[69] I. S. Oliveira,et al. Anomalous magnetocaloric effect in YbAs associated with the giant quadrupolar interaction , 2000 .
[70] W. Wallace,et al. Heat capacity and electrical resistivity of some lanthanide-nickel (LnNi5) compounds between 5 and 300°K , 1973 .
[71] R. Richardson. The Pomeranchuk Effect , 1997 .
[72] W. Giauque,et al. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .
[73] A numerical investigation of entropy changes in superparamagnetic nanocomposite systems , 1995 .
[74] Carlo Paolo Sasso,et al. Thermodynamic aspects of first-order phase transformations with hysteresis in magnetic materials , 2007 .
[75] A. Tishin,et al. Magnetocaloric effect in HoCo2 compound , 1991 .
[76] P. Ranke,et al. Magnetocaloric effect in the Laves phase pseudobinaries (Dy1-cRc)Al2 (R=Er and Ho) , 2008 .
[77] S. Cheong,et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields , 2004, Nature.
[78] M. Costa,et al. The influence of crystalline electric field on the magnetocaloric effect in the series RAl2 (R=Pr, Nd, Tb, Dy, Ho, Er, and Tm) , 2001 .
[79] J. Inoue,et al. Volume dependence of the first-order transition temperature for RCo2 compounds , 1982 .
[80] K. Gschneidner,et al. The giant magnetocaloric effect in Gd5(SixGe1-x)4 materials for magnetic refrigeration , 1998 .
[81] I. S. Oliveira,et al. Positive and 'colossal' magnetocaloric effect due to charge ordering in CMR manganites , 2004 .
[82] Vitalij K. Pecharsky,et al. MAGNETOCALORIC EFFECT AND HEAT CAPACITY IN THE PHASE-TRANSITION REGION , 1999 .
[83] M. Shimizu,et al. Itinerant electron magnetism , 1981 .
[84] M. Sahashi,et al. New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator , 1987 .
[85] D. Givord,et al. Magnetic properties of GdxY1−xNi5 alloys , 1976 .
[86] R. Street,et al. Giant magnetoelastic response in MnAs , 1999 .
[87] C. Kittel,et al. INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .
[88] N. Oliveira. Magnetocaloric effect in the pseudobinaries (Ho1−cRc)Co2 (R = Er and Dy) , 2008 .
[89] S. Gama,et al. Theoretical description of the colossal entropic magnetocaloric effect : Application to MnAs , 2006 .
[90] K. Nenkov,et al. The effect of substitution of Lu for Ho on some physical properties of LuxHo1−xNi2 solid solutions , 2005 .
[91] B. Shen,et al. Pressure enhancement of the giant magnetocaloric effect in LaFe11.6Si1.4 , 2006 .
[92] T. Tang,et al. Magnetocaloric properties of Ag-substituted perovskite-type manganites , 2000 .
[93] W. Ao,et al. The magnetocaloric effect in (Dy,Tb)Co2 alloys , 2007 .
[94] S. Fujieda,et al. Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .
[95] M. Ibarra,et al. Pressure-induced three-dimensional ferromagnetic correlations in the giant magnetocaloric compound Gd5Ge4. , 2003, Physical review letters.
[96] Lance D. Kirol,et al. Rotary recuperative magnetic heat pump , 1988 .
[97] M. Ibarra,et al. Magnetocaloric effect in Tb5(SixGe1−x)4 , 2001 .
[98] Seong-Cho Yu,et al. Review of the magnetocaloric effect in manganite materials , 2007 .
[99] G. V. Brown. Magnetic heat pumping near room temperature , 1976 .
[100] T. Moriya,et al. Theory of itinerant electron magnetism , 1991 .
[101] T. Strässle,et al. Barocaloric effect: The use of pressure for magnetic cooling in Ce3Pd20Ge6 , 2002 .
[102] M. Balli,et al. Giant magnetocaloric effect in Mn1−x(Ti0.5V0.5)xAs : Experiments and calculations , 2008 .
[103] H. Purwins,et al. Magnetic properties of (rare earth)Al2 intermetallic compounds , 1990 .
[104] N. Oliveira. Entropy change upon magnetic field and pressure variations , 2007 .
[105] P. Lacorre,et al. A novel principle for cooling by adiabatic pressure application in rare-earth compounds , 2000 .
[106] R. Radwanski,et al. The specific heat of ErNi5 and LaNi5 , 1992 .
[107] N. Oliveira. Magnetocaloric effect in transition metals based compounds: a theoretical approach , 2004 .
[108] Robert D. Shull,et al. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.
[109] K. Gschneidner,et al. Preparation, crystal structure, magnetic and magnetothermal properties of (GdxR5−x)Si4, where R=Pr and Tb, alloys , 2001 .
[110] P. Entel,et al. Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb) , 2008 .
[111] K. Andres,et al. Crystal-field effects in PrNi/sub 5/: Comparison of calculations with experiments , 1979 .
[112] P. Ranke,et al. Magnetocaloric effect around a magnetic phase transition , 2008 .
[113] P. D. Thacher,et al. Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O3 Compounds , 1968 .
[114] Zhidong Zhang,et al. Giant magnetoresistance and magnetocaloric effects of the Mn1.82V0.18Sb compound , 2004 .
[115] P. Ranke,et al. Magnetocaloric effect in , 2006 .
[116] Philippe Lacorre,et al. COOLING BY ADIABATIC PRESSURE APPLICATION IN PR1-XLAXNIO3 , 1998 .
[117] M. Balli,et al. The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature , 2008 .
[118] J. R. Fernández,et al. Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2 , 2004 .
[119] I. Natkaniec,et al. Crystal field splitting observed in RNi2 compounds (R = Pr, Nd, Tb, Er, Ho, Tm) by means of inelastic neutron scattering , 1989 .
[120] A. Tari,et al. Electronic properties and the appearance of magnetism in the (Tb1−xYx)Co2 compounds , 1986 .
[121] V. Pecharsky,et al. Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .
[122] N. Duc,et al. Metamagnetism, giant magnetoresistance and magnetocaloric effects in RCo2-based compounds in the vicinity of the Curie temperature , 2002 .
[123] K. Gschneidner,et al. Magnetocaloric Properties of Gd3Al2 , 2002 .
[124] W. Ao,et al. Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound , 2006 .
[125] R. McMichael,et al. Enhanced magnetocaloric effect in Gd3Ga5−xFexO12 , 1993 .
[126] S. Gama,et al. Erratum to: Investigation of the first-order metamagnetic transitions and the colossal magnetocaloric effect using a Landau expansion applied to MnAs compound , 2009 .
[127] T. Moriya. Recent progress in the theory of itinerant electron magnetism , 1979 .
[128] P. Debye. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .
[129] S. Gama,et al. Pressure-induced colossal magnetocaloric effect in MnAs. , 2004, Physical review letters.
[130] Karl A. Gschneidner,et al. Magnetocaloric effect and magnetic refrigeration , 1999 .
[131] L. W. Roeland,et al. High field magnetization of NdAl2 single crystals interpreted with crystal field theory , 1974 .
[132] J. Borrego,et al. The magnetocaloric effect in soft magnetic amorphous alloys , 2007 .
[133] V. Amaral,et al. The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements , 2009 .
[134] T. Goto,et al. Itinerant-electron metamagnetism and giant magnetocaloric effect , 2003 .
[135] P. Ranke,et al. Theoretical calculations of the magnetocaloric effect in MnFeP0.45As0.55 : a model of itinerant electrons , 2005 .
[136] Jirong Sun,et al. Determination of the entropy changes in the compounds with a first-order magnetic transition , 2007 .
[137] Hutchings. POINT CHARGE CALCULATIONS OF ENERGY LEVELS OF MAGNETIC IONS IN CRYSTALLINE ELECTRIC FIELDS. Technical Note 13 , 1963 .
[138] T. Lograsso,et al. Hydrostatic pressure control of the magnetostructural phase transition in Gd5Si2Ge2 single crystals , 2005 .
[139] N. Oliveira,et al. Barocaloric and magnetocaloric effects in La(Fe0.89Si0.11)13 , 2008 .
[140] K. Nenkov,et al. The effect of substitution of La for Tb on some physical properties of Tb1−xLaxNi2 solid solutions , 2008 .
[141] H. Kiess,et al. Theoretical Efficiency of Pyroelectric Power Converters , 1966 .
[142] S. Gama,et al. Magnetocaloric effect in the R Ni 5 ( R=Pr , Nd, Gd, Tb, Dy, Ho, Er) series , 2004 .
[143] F. Hu,et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .
[144] P. Ranke,et al. Magnetocaloric effect in (Gd x Tb 1-x ) 5 Si 4 by Monte Carlo simulations , 2006 .
[145] J. Hubbard. Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[146] J. Araújo,et al. Magnetocaloric effect on the Pr0.43Gd0.25Ca0.32MnO3 manganite , 2004 .
[147] Kwang Youn Kim,et al. The magnetic entropy change on amorphous FeMnZr alloys , 2007 .
[148] D. Bloch,et al. METALLIC ALLOYS AND EXCHANGE-ENHANCED PARAMAGNETISM: APPLICATION TO RARE- EARTH--COBALT ALLOYS. , 1970 .
[149] P. Ranke,et al. Magnetocaloric effect in rare-earth-based compounds : A Monte Carlo study , 2006 .
[150] P. Ranke,et al. Magnetocaloric effect in rare-earth pseudobinary Er(Co1-cNic)2 , 2004 .
[151] R. Radwanski,et al. Crystalline electric field and high field magnetization in ErNi5 single crystal , 1994 .
[152] Mary L. Boas,et al. Mathematical Methods in the Physical Sciences , 1968 .
[153] C. Shek,et al. Magnetic entropy in nanocomposite binary gadolinium alloys , 1996 .
[154] T. Samanta,et al. Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound , 2007 .
[155] A. Marty,et al. Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.
[156] X. Moya,et al. Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In , 2007, 0704.1243.
[157] H. Wada,et al. Giant magnetocaloric effect of MnAs1−xSbx , 2001 .
[158] C. Larica,et al. La(Fe1−xCox)11.44Al1.56: A composite system for Ericsson-cycle-based magnetic refrigerators , 2006 .
[159] M. Diviš,et al. Magnetism in RECo2 compounds under high pressure , 2001 .
[160] K. Gschneidner,et al. Low temperature heat capacities and thermal properties of DyAl2, ErAl2 and LuAl2 , 1976 .
[161] I. S. Oliveira,et al. Origin of anomalous magnetocaloric effect in ( Dy 1 − z Er z ) Al 2 alloys , 2002 .
[162] M. Ibarra,et al. Anisotropy in the paramagnetic phase of RENi5 hexagonal intermetallic compounds (RE = Tb, Ho, Nd) , 1996 .
[163] Mahmud Tareq Hassan Khan,et al. Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .
[164] V. Pecharsky,et al. Recent Developments in Magnetic Refrigeration , 1999 .
[165] M. E. Wood,et al. General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .
[166] R. Shull,et al. Magnetic properties of a high energy ball-milled amorphous Gd5Si1.8Ge1.8Sn0.4 alloy , 2008 .
[167] S. Malik,et al. Anomalous magnetocaloric effect and magnetoresistance in Ho(Ni,Fe)2 compounds , 2005 .
[168] M. Leask,et al. The raising of angular momentum degeneracy of f-Electron terms by cubic crystal fields , 1962 .
[169] M. Costa,et al. Magnetocaloric effect in the intermetallic compounds RCo 2 (R=Dy,Ho,Er) , 2002 .
[170] K. Buschow,et al. Composition and crystal structure of hexagonal Cu-rich rare earth–copper compounds , 1971 .
[171] W. Dai. Regenerative balance in magnetic Ericsson refrigeration cycles , 1992 .
[172] K. Gschneidner,et al. The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .
[173] T. Moriya. Spin Fluctuations and a Unified Picture of Magnetism , 1981 .
[174] L. Mañosa,et al. Dynamics of the first-order magnetostructural transition in Gd5(SixGe1-x)4 , 2004 .
[175] K.H.J. Buschow,et al. Magnetic refrigeration—towards room-temperature applications , 2003 .
[176] É. Valiev. Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions , 2009 .
[177] Vitalij K. Pecharsky,et al. Gd5(SixGe1–x)4: An Extremum Material , 2001 .
[178] H. Wada,et al. Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .
[179] A. Markosyan,et al. Physical properties of RCo2 Laves phases , 2001 .
[180] V. Souza,et al. Influence of spin reorientation on magnetocaloric effect in NdAl2: A microscopic model , 2006 .
[181] S. Roy,et al. Magnetocaloric effect in CeFe2 and Ru-doped CeFe2 alloys , 2006 .
[182] M. Shimizu,et al. First order transitions in ACo2 compounds , 1975 .
[183] C. Sasso,et al. Modeling Hysteresis of First-Order Magneto-Structural Phase Transformations , 2008, IEEE Transactions on Magnetics.
[184] M. Continentino,et al. A solid state Pomeranchuk refrigerator , 2005 .
[185] A. Yücel,et al. Magnetocaloric effect in Tb5Si2−xGe2−xFe2x (0 ≤ 2x ≤ 0.1) compounds , 2009 .
[186] X. Moya,et al. Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape memory alloy , 2007, 0704.1241.
[187] V. Amaral,et al. A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies , 2007 .
[188] S. Gama,et al. The influence of the spin reorientation process on the magnetocaloric effect: Application to PrAl2 , 2007 .
[189] N. Oliveira. Magnetocaloric effect under applied pressure and the barocaloric effect in the compounds RCo2 (R = Er, Ho and Dy) , 2008 .
[190] V. Souza,et al. Magnetocaloric Effect Due To Spin Reorientation In The Crystalline Electrical Field: Theory Applied To Dy Al2 , 2007 .
[191] S. Gorsse,et al. Magnetic behavior and magnetocaloric effect of neodymium-based amorphous alloy , 2008 .
[192] V. Pecharsky,et al. Comment on "Direct measurement of the 'Giant' adiabatic temperature change in Gd5Si2Ge2". , 2000, Physical review letters.
[193] Jincan Chen,et al. THE EFFECT OF FIELD-DEPENDENT HEAT-CAPACITY ON REGENERATION IN MAGNETIC ERICSSON CYCLES , 1991 .
[194] K. Gschneidner,et al. Recent developments in magnetocaloric materials , 2003 .
[195] A. Nayak,et al. Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys , 2009, 1006.0072.
[196] S. Alpay,et al. Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields , 2007 .
[197] E. Gratz,et al. On the magnetic behaviour of ACo2 (A = Y, Lu, Zr, Sc and Hf) compounds , 1993 .
[198] N. Oliveira,et al. On the magnetocaloric effect in Gd(Zn1−xCdx) , 2006 .
[199] Xavier Moya,et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.
[200] L. Schultz,et al. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx. , 2008, Physical review letters.
[201] D. Edwards,et al. Magnetic Properties of Iron and Cobalt in a Combined Model of Itinerant Electrons and Localized Spins , 1975 .
[202] P. Ranke,et al. Magnetocaloric effect in the Laves phase pseudobinary (Er 1- c Dy c )Co 2 , 2003 .
[203] N. Oliveira. Magnetocaloric effect in systems of itinerant electrons: application to Fe, Co, Ni, YFe2 and YFe3 compounds , 2005 .
[204] K. Gschneidner,et al. Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4 , 1997 .
[205] A. Furrer,et al. Cooling by adiabatic application of pressure – the barocaloric effect , 2000 .
[206] S. Gubin,et al. Magnetic molecular clusters as promising materials for refrigeration in low-temperature regions , 2001 .
[207] X. Y. Liu,et al. Effect of sample preparation on the magnetic and magnetocaloric properties of amorphous Gd70Ni30 , 1998 .
[208] K. Gschneidner,et al. The correlation of the magnetic properties and the magnetocaloric effect in (Gd1−xErx)NiAl alloys , 1998 .
[209] A. Tishin,et al. The Magnetocaloric Effect and its Applications , 2003 .
[210] N. Oliveira,et al. Theoretical calculations of the magnetocaloric effect in La ( Fe x Si 1 - x ) 13 , 2006 .
[211] M. Shiga,et al. Calorimetric study on magnetism of ErCo2 , 1995 .
[212] P. Ranke,et al. Investigations on magnetic refrigeration: Application to RNi2 (R=Nd, Gd, Tb, Dy, Ho, and Er) , 2003 .
[213] C. Larica,et al. Magnetic and magnetocaloric properties of La(Fe,Co)11.4SP1.6 compounds (SP=Al or Si) , 2007 .
[214] K. Motizuki,et al. Spin Fluctuation Theory of Intermetallic Compound MnAs , 1984 .
[215] Jincan Chen,et al. The effect of field‐dependent heat capacity on the characteristics of the ferromagnetic Ericsson refrigeration cycle , 1992 .
[216] Du You-wei,et al. The origin of the large magnetocaloric effect in RCo2 (R=Er, Ho and Dy) , 2003 .
[217] L. Caron,et al. Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[218] T. Samanta,et al. Magnetocaloric properties of nanocrystalline Pr0.65(Ca0.6Sr0.4)0.35MnO3 , 2008 .
[219] M. Shiga,et al. Magnetocaloric properties of a first-order magnetic transition system ErCo2 , 1999 .
[220] Vitalij K. Pecharsky,et al. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .
[221] K. Gschneidner,et al. Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2 , ErAl 2 , and DyNi 2 , 1998 .
[222] Youwei Du,et al. Preparation and magnetocaloric effect of self-doped La0.8?xNa0.2xMnO3+? ( = vacancies) polycrystal , 2002 .
[223] C. Kittel. Model of Exchange-Inversion Magnetization , 1960 .
[224] M. Shiga,et al. Magnetocaloric effect of ErCo2 , 1999 .
[225] R. Chahine,et al. Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .
[226] K. Gschneidner,et al. Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .
[227] S. Müller,et al. Perturbed angular correlation study of the magnetic phase transitions in the rare-earth cobalt Laves phases RCo2 , 2003 .
[228] W. Sun,et al. The giant magnetocaloric effect of Gd5Si1.95Ge2.05 enhanced by Sn doping , 2006 .
[229] H. Szymczak,et al. Magnetocaloric effect in Fe–Cr–Cu–Nb–Si–B amorphous materials , 2009 .
[230] P. Algarabel,et al. Magnetic-martensitic transition of Tb 5 Si 2 Ge 2 studied with neutron powder diffraction , 2003 .
[231] G. Kletetschka,et al. The effects of small metal additions (Co,Cu,Ga,Mn,Al,Bi,Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy , 2006 .
[232] J. H. Westbrook,et al. Intermetallic compounds : principles and practice , 2002 .
[233] P. Ranke,et al. Magnetocaloric effect in the rare earth doped compounds (R1−cαRcη)Ni2 , 2007 .
[234] K. Buschow. Chapter 4 Rare earth compounds , 1980 .
[235] L. P. Cardoso,et al. Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs , 2006, Nature materials.
[236] L. Mañosa,et al. Scaling of the entropy change at the magnetoelastic transition in Gd5(SixGe1-x)4 , 2002 .
[237] M. Costa,et al. Magnetocaloric effect in the Laves phase pseudobinary Er1-cYcCo2 , 2002 .
[238] Theoretical investigation on the anisotropic magnetocaloric effect: Application to DyAl2 , 2008 .
[239] H. Ohno,et al. Electric-field control of ferromagnetism , 2000, Nature.
[240] M. Rotter,et al. New magnetic phenomena in TbNi2 , 1999 .
[241] M. Ibarra,et al. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2. , 2004, Physical review letters.
[242] S. Gama,et al. Analytical model to understand the colossal magnetocaloric effect , 2005 .
[243] T. Goto,et al. Giant magnetocaloric effect in itinerant-electron metamagnets , 2004 .
[244] E. Gmelin,et al. Metamagnetic transition and magnetocaloric effect in ErCo2 , 1999 .