Theoretical aspects of the magnetocaloric effect

Abstract The magnetocaloric effect is the heating or cooling of magnetic materials when subjected to magnetic field variation. It is characterized by the temperature change ( Δ T a d ) in an adiabatic process and by the entropy change ( Δ S i s o ) in an isothermal process. The renewed interest in the magnetocaloric effect can be attributed to Brown’s work concerning the near room temperature magnetic refrigerator and Pecharsky and Gschneidner’s discovery of the giant magnetocaloric effect near room temperature in Gd5Si2Ge2. After these pioneering works, the magnetocaloric effect has been intensively studied in a great number of magnetic materials. Despite this intense study, the underlying physics behind the magnetocaloric effect is not yet completely understood. In this report, we discuss the theoretical aspects of the magnetocaloric effect in rare earth metals and their alloys as well as in transition metal based compounds. In particular, we discuss the effects of pressure, doping, anisotropy and magnetoelastic interaction on the magnetocaloric potentials Δ S i s o and Δ T a d . The magnetocaloric effect in rare earth based compounds is discussed by using model Hamiltonians of interacting localized magnetic moments, including the crystalline electrical field interaction and the magnetoelastic coupling. The discussion of the magnetocaloric effect in transition metal based compounds is made by using model Hamiltonians based in the framework of the band theory. The results discussed in this report reveal important aspects of the magnetocaloric effect as well as point out some new perspectives on this area of research.

[1]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[2]  O. Gutfleisch,et al.  Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons , 2005 .

[3]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[4]  V. Amaral,et al.  Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials , 2004 .

[5]  J. D. Childress Application of a Ferroelectric Material in an Energy Conversion Device , 1962 .

[6]  H. Ohno,et al.  Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor , 2003, Science.

[7]  Y. Li,et al.  Magnetic properties and magnetic entropy change of amorphous and crystalline GdNiAl ribbons , 2002 .

[8]  B. Teng,et al.  A phenomenological description of the first-order transition in the Gd5(SixGe1−x)4(0.24≤x≤0.5) alloys , 2002 .

[9]  T. Strässle,et al.  Magnetic cooling by the application of external pressure in rare-earth compounds , 2003 .

[10]  S. Khmelevskyi,et al.  The order of the magnetic phase transitions in RCo2 (R = rare earth) intermetallic compounds , 2000 .

[11]  S. Gama,et al.  Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd5(SixGe1−x)4 , 2004 .

[12]  M. Balli,et al.  Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound , 2009 .

[13]  L. Mañosa,et al.  Change in entropy at a first-order magnetoelastic phase transition: Case study of Gd5(SixGe1−x)4 giant magnetocaloric alloys , 2003 .

[14]  N. Q. Hoa,et al.  The discovery of the colossal magnetocaloric effect in a series of amorphous ribbons based on Finemet , 2007 .

[15]  O. Tatsenko,et al.  Crossover in the Van Vleck paramagnet TmPO4 , 2003 .

[16]  Vitalij K. Pecharsky,et al.  Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys , 2001 .

[17]  A. Tishin Magnetocaloric effect : Current situation and future trends , 2007 .

[18]  F. Altorfer,et al.  HoAs: a model compound for the cooling by the barocaloric effect , 2001 .

[19]  H. Sugawara,et al.  Magnetocaloric effects of Laves phase Er(Co1−xNix)2 compounds , 2001 .

[20]  P. Ranke,et al.  Monte Carlo calculations of the magnetocaloric effect in RAl2 (R=Dy,Er) , 2006 .

[21]  F. D. Boer,et al.  Tuning of the magneto-caloric effects in MnFe(P,As) by substitution of elements , 2004 .

[22]  R. Sarthour,et al.  Influence of the crystalline electrical field on the magnetocaloric effect in the series RNi 2 (R=Pr, Nd, Gd, Tb, Ho, Er) , 2001 .

[23]  Vitalij K. Pecharsky,et al.  Electron correlation effects on the magnetostructural transition and magnetocaloric effect inGd5Si2Ge2 , 2006 .

[24]  C. Shek,et al.  Preparation of nanocomposite working substances for room-temperature magnetic refrigeration , 1996 .

[25]  K. Yosida,et al.  Magnetic Properties of Cu-Mn Alloys , 1957 .

[26]  S. Doniach,et al.  A quantum approach to the solid state , 1970 .

[27]  Functional integral approach to the magnetic properties of Laves phase intermetallics , 1992 .

[28]  P. Algarabel,et al.  Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .

[29]  A. Tishin Magnetocaloric effect in strong magnetic fields , 1990 .

[30]  N. D. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[31]  N. Oliveira Magnetocaloric effect in rare earth doped compounds , 2008 .

[32]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[33]  The magnetocaloric effect in R5Si4 (R = Gd, Tb): a Monte Carlo calculation , 2006 .

[34]  S. Gama,et al.  Calculation of the giant magnetocaloric effect in the MnFeP 0.45 As 0.55 compound , 2004 .

[35]  C. P. Bean,et al.  Magnetic Disorder as a First-Order Phase Transformation , 1962 .

[36]  Y. Akishige,et al.  Giant magnetocaloric effect of MnAs1-xSbx in the vicinity of first-order magnetic transition , 2003 .

[37]  Xiangzhao Meng,et al.  Review on research of room temperature magnetic refrigeration , 2003 .

[38]  R. Shull,et al.  Amorphous-FeCoCrZrB ferromagnets for use as high-temperature magnetic refrigerants , 2006 .

[39]  T. Shen,et al.  Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy , 2002 .

[40]  K. Gschneidner,et al.  Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .

[41]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .

[42]  W. A. Steyert Stirling‐cycle rotating magnetic refrigerators and heat engines for use near room temperature , 1978 .

[43]  T. Goto,et al.  Magnetic properties of MnAs0.7Sb0.3 under high pressure: Comparison with the magnetic moment calculated for MnAs with the NiAs-type structure , 2001 .

[44]  Young,et al.  Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5(Si2Ge2) , 2000, Physical review letters.

[45]  H. Purwins Single crystal preparation and crystalline electric field parameters of ErAl2 , 1970 .

[46]  K. Buschow,et al.  Magnetic Anisotropy and Conduction-Electron Exchange Polarization in Ferromagnetic (Rare-Earth) Al 2 Compounds , 1973 .

[47]  D. Gignoux,et al.  Magnetic properties of single crystals of Gd Co 2 , Ho Ni 2 , and Ho Co 2 , 1975 .

[48]  S. Gama,et al.  Theoretical investigations on giant magnetocaloric effect in MnAs1−xSbx , 2004 .

[49]  P. Ranke,et al.  Monte Carlo calculations of the magnetocaloric effect inGd5(SixGe1−x)4compounds , 2005 .

[50]  K. Gschneidner,et al.  Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.

[51]  N. Duc,et al.  Magnetocaloric effects in RCo2 compounds , 2002 .

[52]  Richard Chahine,et al.  Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .

[53]  Vitalij K. Pecharsky,et al.  Advanced magnetocaloric materials: What does the future hold? , 2006 .

[54]  P. Ranke,et al.  Monte Carlo calculations of the magnetocaloric effect in (Gd0.6Tb0.4)5Si4(Gd0.6Tb0.4)5Si4 , 2007 .

[55]  N. Singh,et al.  Effect of Tm substitution on the magnetic and magnetocaloric properties in the intermetallic compounds (Tb1−xTmx)Co2 , 2007 .

[56]  N. Singh,et al.  Measurement of pressure effects on the magnetic and the magnetocaloric properties of the intermetallic compounds DyCo2 and Er(Co1−xSix)2 , 2006, cond-mat/0608191.

[57]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[58]  H. Rakoto,et al.  Anomalous magnetocaloric effect in van vleck paramagnet HoVO4 near energy level crossing , 2008 .

[59]  A. Guimarães,et al.  Anomaly in the magnetocaloric effect in the intermetallic compound DyAl 2 , 2000 .

[60]  X. Bohigas,et al.  Giant and time-dependent magnetocaloric effect in high-spin molecular magnets , 2000, cond-mat/0011384.

[61]  Effect of Fe-substitution on microstructure, hysteresis behaviour and magnetocaloric effect in Gd5Si2Ge2 Alloys , 2009 .

[62]  J. Herrero‐Albillos,et al.  Nature and entropy content of the ordering transitions in RCo2 , 2006 .

[63]  A. Thompson,et al.  Low temperature heat capacities of laves phase lanthanide-aluminum compounds* , 1971 .

[64]  K. Gschneidner,et al.  Anomalous behavior of the magnetic entropy in PrNi{sub 5} , 1998 .

[65]  T. Lograsso,et al.  Magnetic properties of single-crystal DyAl2 , 2005 .

[66]  V. Barthem,et al.  Magnetic properties of the hexagonal NdNi5 and NdCu5 compounds , 1989 .

[67]  O. Gutfleisch,et al.  Large magnetocaloric effect in melt-spun LaFe13−xSix , 2005 .

[68]  P. Švec,et al.  A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe∕B ratios , 2007 .

[69]  I. S. Oliveira,et al.  Anomalous magnetocaloric effect in YbAs associated with the giant quadrupolar interaction , 2000 .

[70]  W. Wallace,et al.  Heat capacity and electrical resistivity of some lanthanide-nickel (LnNi5) compounds between 5 and 300°K , 1973 .

[71]  R. Richardson The Pomeranchuk Effect , 1997 .

[72]  W. Giauque,et al.  Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd 2 (SO 4 ) 3 .8H 2 O , 1933 .

[73]  A numerical investigation of entropy changes in superparamagnetic nanocomposite systems , 1995 .

[74]  Carlo Paolo Sasso,et al.  Thermodynamic aspects of first-order phase transformations with hysteresis in magnetic materials , 2007 .

[75]  A. Tishin,et al.  Magnetocaloric effect in HoCo2 compound , 1991 .

[76]  P. Ranke,et al.  Magnetocaloric effect in the Laves phase pseudobinaries (Dy1-cRc)Al2 (R=Er and Ho) , 2008 .

[77]  S. Cheong,et al.  Electric polarization reversal and memory in a multiferroic material induced by magnetic fields , 2004, Nature.

[78]  M. Costa,et al.  The influence of crystalline electric field on the magnetocaloric effect in the series RAl2 (R=Pr, Nd, Tb, Dy, Ho, Er, and Tm) , 2001 .

[79]  J. Inoue,et al.  Volume dependence of the first-order transition temperature for RCo2 compounds , 1982 .

[80]  K. Gschneidner,et al.  The giant magnetocaloric effect in Gd5(SixGe1-x)4 materials for magnetic refrigeration , 1998 .

[81]  I. S. Oliveira,et al.  Positive and 'colossal' magnetocaloric effect due to charge ordering in CMR manganites , 2004 .

[82]  Vitalij K. Pecharsky,et al.  MAGNETOCALORIC EFFECT AND HEAT CAPACITY IN THE PHASE-TRANSITION REGION , 1999 .

[83]  M. Shimizu,et al.  Itinerant electron magnetism , 1981 .

[84]  M. Sahashi,et al.  New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator , 1987 .

[85]  D. Givord,et al.  Magnetic properties of GdxY1−xNi5 alloys , 1976 .

[86]  R. Street,et al.  Giant magnetoelastic response in MnAs , 1999 .

[87]  C. Kittel,et al.  INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .

[88]  N. Oliveira Magnetocaloric effect in the pseudobinaries (Ho1−cRc)Co2 (R = Er and Dy) , 2008 .

[89]  S. Gama,et al.  Theoretical description of the colossal entropic magnetocaloric effect : Application to MnAs , 2006 .

[90]  K. Nenkov,et al.  The effect of substitution of Lu for Ho on some physical properties of LuxHo1−xNi2 solid solutions , 2005 .

[91]  B. Shen,et al.  Pressure enhancement of the giant magnetocaloric effect in LaFe11.6Si1.4 , 2006 .

[92]  T. Tang,et al.  Magnetocaloric properties of Ag-substituted perovskite-type manganites , 2000 .

[93]  W. Ao,et al.  The magnetocaloric effect in (Dy,Tb)Co2 alloys , 2007 .

[94]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[95]  M. Ibarra,et al.  Pressure-induced three-dimensional ferromagnetic correlations in the giant magnetocaloric compound Gd5Ge4. , 2003, Physical review letters.

[96]  Lance D. Kirol,et al.  Rotary recuperative magnetic heat pump , 1988 .

[97]  M. Ibarra,et al.  Magnetocaloric effect in Tb5(SixGe1−x)4 , 2001 .

[98]  Seong-Cho Yu,et al.  Review of the magnetocaloric effect in manganite materials , 2007 .

[99]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[100]  T. Moriya,et al.  Theory of itinerant electron magnetism , 1991 .

[101]  T. Strässle,et al.  Barocaloric effect: The use of pressure for magnetic cooling in Ce3Pd20Ge6 , 2002 .

[102]  M. Balli,et al.  Giant magnetocaloric effect in Mn1−x(Ti0.5V0.5)xAs : Experiments and calculations , 2008 .

[103]  H. Purwins,et al.  Magnetic properties of (rare earth)Al2 intermetallic compounds , 1990 .

[104]  N. Oliveira Entropy change upon magnetic field and pressure variations , 2007 .

[105]  P. Lacorre,et al.  A novel principle for cooling by adiabatic pressure application in rare-earth compounds , 2000 .

[106]  R. Radwanski,et al.  The specific heat of ErNi5 and LaNi5 , 1992 .

[107]  N. Oliveira Magnetocaloric effect in transition metals based compounds: a theoretical approach , 2004 .

[108]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[109]  K. Gschneidner,et al.  Preparation, crystal structure, magnetic and magnetothermal properties of (GdxR5−x)Si4, where R=Pr and Tb, alloys , 2001 .

[110]  P. Entel,et al.  Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb) , 2008 .

[111]  K. Andres,et al.  Crystal-field effects in PrNi/sub 5/: Comparison of calculations with experiments , 1979 .

[112]  P. Ranke,et al.  Magnetocaloric effect around a magnetic phase transition , 2008 .

[113]  P. D. Thacher,et al.  Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O3 Compounds , 1968 .

[114]  Zhidong Zhang,et al.  Giant magnetoresistance and magnetocaloric effects of the Mn1.82V0.18Sb compound , 2004 .

[115]  P. Ranke,et al.  Magnetocaloric effect in , 2006 .

[116]  Philippe Lacorre,et al.  COOLING BY ADIABATIC PRESSURE APPLICATION IN PR1-XLAXNIO3 , 1998 .

[117]  M. Balli,et al.  The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature , 2008 .

[118]  J. R. Fernández,et al.  Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2 , 2004 .

[119]  I. Natkaniec,et al.  Crystal field splitting observed in RNi2 compounds (R = Pr, Nd, Tb, Er, Ho, Tm) by means of inelastic neutron scattering , 1989 .

[120]  A. Tari,et al.  Electronic properties and the appearance of magnetism in the (Tb1−xYx)Co2 compounds , 1986 .

[121]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[122]  N. Duc,et al.  Metamagnetism, giant magnetoresistance and magnetocaloric effects in RCo2-based compounds in the vicinity of the Curie temperature , 2002 .

[123]  K. Gschneidner,et al.  Magnetocaloric Properties of Gd3Al2 , 2002 .

[124]  W. Ao,et al.  Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound , 2006 .

[125]  R. McMichael,et al.  Enhanced magnetocaloric effect in Gd3Ga5−xFexO12 , 1993 .

[126]  S. Gama,et al.  Erratum to: Investigation of the first-order metamagnetic transitions and the colossal magnetocaloric effect using a Landau expansion applied to MnAs compound , 2009 .

[127]  T. Moriya Recent progress in the theory of itinerant electron magnetism , 1979 .

[128]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .

[129]  S. Gama,et al.  Pressure-induced colossal magnetocaloric effect in MnAs. , 2004, Physical review letters.

[130]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[131]  L. W. Roeland,et al.  High field magnetization of NdAl2 single crystals interpreted with crystal field theory , 1974 .

[132]  J. Borrego,et al.  The magnetocaloric effect in soft magnetic amorphous alloys , 2007 .

[133]  V. Amaral,et al.  The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements , 2009 .

[134]  T. Goto,et al.  Itinerant-electron metamagnetism and giant magnetocaloric effect , 2003 .

[135]  P. Ranke,et al.  Theoretical calculations of the magnetocaloric effect in MnFeP0.45As0.55 : a model of itinerant electrons , 2005 .

[136]  Jirong Sun,et al.  Determination of the entropy changes in the compounds with a first-order magnetic transition , 2007 .

[137]  Hutchings POINT CHARGE CALCULATIONS OF ENERGY LEVELS OF MAGNETIC IONS IN CRYSTALLINE ELECTRIC FIELDS. Technical Note 13 , 1963 .

[138]  T. Lograsso,et al.  Hydrostatic pressure control of the magnetostructural phase transition in Gd5Si2Ge2 single crystals , 2005 .

[139]  N. Oliveira,et al.  Barocaloric and magnetocaloric effects in La(Fe0.89Si0.11)13 , 2008 .

[140]  K. Nenkov,et al.  The effect of substitution of La for Tb on some physical properties of Tb1−xLaxNi2 solid solutions , 2008 .

[141]  H. Kiess,et al.  Theoretical Efficiency of Pyroelectric Power Converters , 1966 .

[142]  S. Gama,et al.  Magnetocaloric effect in the R Ni 5 ( R=Pr , Nd, Gd, Tb, Dy, Ho, Er) series , 2004 .

[143]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[144]  P. Ranke,et al.  Magnetocaloric effect in (Gd x Tb 1-x ) 5 Si 4 by Monte Carlo simulations , 2006 .

[145]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[146]  J. Araújo,et al.  Magnetocaloric effect on the Pr0.43Gd0.25Ca0.32MnO3 manganite , 2004 .

[147]  Kwang Youn Kim,et al.  The magnetic entropy change on amorphous FeMnZr alloys , 2007 .

[148]  D. Bloch,et al.  METALLIC ALLOYS AND EXCHANGE-ENHANCED PARAMAGNETISM: APPLICATION TO RARE- EARTH--COBALT ALLOYS. , 1970 .

[149]  P. Ranke,et al.  Magnetocaloric effect in rare-earth-based compounds : A Monte Carlo study , 2006 .

[150]  P. Ranke,et al.  Magnetocaloric effect in rare-earth pseudobinary Er(Co1-cNic)2 , 2004 .

[151]  R. Radwanski,et al.  Crystalline electric field and high field magnetization in ErNi5 single crystal , 1994 .

[152]  Mary L. Boas,et al.  Mathematical Methods in the Physical Sciences , 1968 .

[153]  C. Shek,et al.  Magnetic entropy in nanocomposite binary gadolinium alloys , 1996 .

[154]  T. Samanta,et al.  Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound , 2007 .

[155]  A. Marty,et al.  Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.

[156]  X. Moya,et al.  Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In , 2007, 0704.1243.

[157]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[158]  C. Larica,et al.  La(Fe1−xCox)11.44Al1.56: A composite system for Ericsson-cycle-based magnetic refrigerators , 2006 .

[159]  M. Diviš,et al.  Magnetism in RECo2 compounds under high pressure , 2001 .

[160]  K. Gschneidner,et al.  Low temperature heat capacities and thermal properties of DyAl2, ErAl2 and LuAl2 , 1976 .

[161]  I. S. Oliveira,et al.  Origin of anomalous magnetocaloric effect in ( Dy 1 − z Er z ) Al 2 alloys , 2002 .

[162]  M. Ibarra,et al.  Anisotropy in the paramagnetic phase of RENi5 hexagonal intermetallic compounds (RE = Tb, Ho, Nd) , 1996 .

[163]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .

[164]  V. Pecharsky,et al.  Recent Developments in Magnetic Refrigeration , 1999 .

[165]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[166]  R. Shull,et al.  Magnetic properties of a high energy ball-milled amorphous Gd5Si1.8Ge1.8Sn0.4 alloy , 2008 .

[167]  S. Malik,et al.  Anomalous magnetocaloric effect and magnetoresistance in Ho(Ni,Fe)2 compounds , 2005 .

[168]  M. Leask,et al.  The raising of angular momentum degeneracy of f-Electron terms by cubic crystal fields , 1962 .

[169]  M. Costa,et al.  Magnetocaloric effect in the intermetallic compounds RCo 2 (R=Dy,Ho,Er) , 2002 .

[170]  K. Buschow,et al.  Composition and crystal structure of hexagonal Cu-rich rare earth–copper compounds , 1971 .

[171]  W. Dai Regenerative balance in magnetic Ericsson refrigeration cycles , 1992 .

[172]  K. Gschneidner,et al.  The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .

[173]  T. Moriya Spin Fluctuations and a Unified Picture of Magnetism , 1981 .

[174]  L. Mañosa,et al.  Dynamics of the first-order magnetostructural transition in Gd5(SixGe1-x)4 , 2004 .

[175]  K.H.J. Buschow,et al.  Magnetic refrigeration—towards room-temperature applications , 2003 .

[176]  É. Valiev Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions , 2009 .

[177]  Vitalij K. Pecharsky,et al.  Gd5(SixGe1–x)4: An Extremum Material , 2001 .

[178]  H. Wada,et al.  Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .

[179]  A. Markosyan,et al.  Physical properties of RCo2 Laves phases , 2001 .

[180]  V. Souza,et al.  Influence of spin reorientation on magnetocaloric effect in NdAl2: A microscopic model , 2006 .

[181]  S. Roy,et al.  Magnetocaloric effect in CeFe2 and Ru-doped CeFe2 alloys , 2006 .

[182]  M. Shimizu,et al.  First order transitions in ACo2 compounds , 1975 .

[183]  C. Sasso,et al.  Modeling Hysteresis of First-Order Magneto-Structural Phase Transformations , 2008, IEEE Transactions on Magnetics.

[184]  M. Continentino,et al.  A solid state Pomeranchuk refrigerator , 2005 .

[185]  A. Yücel,et al.  Magnetocaloric effect in Tb5Si2−xGe2−xFe2x (0 ≤ 2x ≤ 0.1) compounds , 2009 .

[186]  X. Moya,et al.  Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape memory alloy , 2007, 0704.1241.

[187]  V. Amaral,et al.  A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies , 2007 .

[188]  S. Gama,et al.  The influence of the spin reorientation process on the magnetocaloric effect: Application to PrAl2 , 2007 .

[189]  N. Oliveira Magnetocaloric effect under applied pressure and the barocaloric effect in the compounds RCo2 (R = Er, Ho and Dy) , 2008 .

[190]  V. Souza,et al.  Magnetocaloric Effect Due To Spin Reorientation In The Crystalline Electrical Field: Theory Applied To Dy Al2 , 2007 .

[191]  S. Gorsse,et al.  Magnetic behavior and magnetocaloric effect of neodymium-based amorphous alloy , 2008 .

[192]  V. Pecharsky,et al.  Comment on "Direct measurement of the 'Giant' adiabatic temperature change in Gd5Si2Ge2". , 2000, Physical review letters.

[193]  Jincan Chen,et al.  THE EFFECT OF FIELD-DEPENDENT HEAT-CAPACITY ON REGENERATION IN MAGNETIC ERICSSON CYCLES , 1991 .

[194]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[195]  A. Nayak,et al.  Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys , 2009, 1006.0072.

[196]  S. Alpay,et al.  Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields , 2007 .

[197]  E. Gratz,et al.  On the magnetic behaviour of ACo2 (A = Y, Lu, Zr, Sc and Hf) compounds , 1993 .

[198]  N. Oliveira,et al.  On the magnetocaloric effect in Gd(Zn1−xCdx) , 2006 .

[199]  Xavier Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[200]  L. Schultz,et al.  Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx. , 2008, Physical review letters.

[201]  D. Edwards,et al.  Magnetic Properties of Iron and Cobalt in a Combined Model of Itinerant Electrons and Localized Spins , 1975 .

[202]  P. Ranke,et al.  Magnetocaloric effect in the Laves phase pseudobinary (Er 1- c Dy c )Co 2 , 2003 .

[203]  N. Oliveira Magnetocaloric effect in systems of itinerant electrons: application to Fe, Co, Ni, YFe2 and YFe3 compounds , 2005 .

[204]  K. Gschneidner,et al.  Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4 , 1997 .

[205]  A. Furrer,et al.  Cooling by adiabatic application of pressure – the barocaloric effect , 2000 .

[206]  S. Gubin,et al.  Magnetic molecular clusters as promising materials for refrigeration in low-temperature regions , 2001 .

[207]  X. Y. Liu,et al.  Effect of sample preparation on the magnetic and magnetocaloric properties of amorphous Gd70Ni30 , 1998 .

[208]  K. Gschneidner,et al.  The correlation of the magnetic properties and the magnetocaloric effect in (Gd1−xErx)NiAl alloys , 1998 .

[209]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[210]  N. Oliveira,et al.  Theoretical calculations of the magnetocaloric effect in La ( Fe x Si 1 - x ) 13 , 2006 .

[211]  M. Shiga,et al.  Calorimetric study on magnetism of ErCo2 , 1995 .

[212]  P. Ranke,et al.  Investigations on magnetic refrigeration: Application to RNi2 (R=Nd, Gd, Tb, Dy, Ho, and Er) , 2003 .

[213]  C. Larica,et al.  Magnetic and magnetocaloric properties of La(Fe,Co)11.4SP1.6 compounds (SP=Al or Si) , 2007 .

[214]  K. Motizuki,et al.  Spin Fluctuation Theory of Intermetallic Compound MnAs , 1984 .

[215]  Jincan Chen,et al.  The effect of field‐dependent heat capacity on the characteristics of the ferromagnetic Ericsson refrigeration cycle , 1992 .

[216]  Du You-wei,et al.  The origin of the large magnetocaloric effect in RCo2 (R=Er, Ho and Dy) , 2003 .

[217]  L. Caron,et al.  Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[218]  T. Samanta,et al.  Magnetocaloric properties of nanocrystalline Pr0.65(Ca0.6Sr0.4)0.35MnO3 , 2008 .

[219]  M. Shiga,et al.  Magnetocaloric properties of a first-order magnetic transition system ErCo2 , 1999 .

[220]  Vitalij K. Pecharsky,et al.  Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .

[221]  K. Gschneidner,et al.  Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2 , ErAl 2 , and DyNi 2 , 1998 .

[222]  Youwei Du,et al.  Preparation and magnetocaloric effect of self-doped La0.8?xNa0.2xMnO3+? ( = vacancies) polycrystal , 2002 .

[223]  C. Kittel Model of Exchange-Inversion Magnetization , 1960 .

[224]  M. Shiga,et al.  Magnetocaloric effect of ErCo2 , 1999 .

[225]  R. Chahine,et al.  Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .

[226]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[227]  S. Müller,et al.  Perturbed angular correlation study of the magnetic phase transitions in the rare-earth cobalt Laves phases RCo2 , 2003 .

[228]  W. Sun,et al.  The giant magnetocaloric effect of Gd5Si1.95Ge2.05 enhanced by Sn doping , 2006 .

[229]  H. Szymczak,et al.  Magnetocaloric effect in Fe–Cr–Cu–Nb–Si–B amorphous materials , 2009 .

[230]  P. Algarabel,et al.  Magnetic-martensitic transition of Tb 5 Si 2 Ge 2 studied with neutron powder diffraction , 2003 .

[231]  G. Kletetschka,et al.  The effects of small metal additions (Co,Cu,Ga,Mn,Al,Bi,Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy , 2006 .

[232]  J. H. Westbrook,et al.  Intermetallic compounds : principles and practice , 2002 .

[233]  P. Ranke,et al.  Magnetocaloric effect in the rare earth doped compounds (R1−cαRcη)Ni2 , 2007 .

[234]  K. Buschow Chapter 4 Rare earth compounds , 1980 .

[235]  L. P. Cardoso,et al.  Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs , 2006, Nature materials.

[236]  L. Mañosa,et al.  Scaling of the entropy change at the magnetoelastic transition in Gd5(SixGe1-x)4 , 2002 .

[237]  M. Costa,et al.  Magnetocaloric effect in the Laves phase pseudobinary Er1-cYcCo2 , 2002 .

[238]  Theoretical investigation on the anisotropic magnetocaloric effect: Application to DyAl2 , 2008 .

[239]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[240]  M. Rotter,et al.  New magnetic phenomena in TbNi2 , 1999 .

[241]  M. Ibarra,et al.  Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2. , 2004, Physical review letters.

[242]  S. Gama,et al.  Analytical model to understand the colossal magnetocaloric effect , 2005 .

[243]  T. Goto,et al.  Giant magnetocaloric effect in itinerant-electron metamagnets , 2004 .

[244]  E. Gmelin,et al.  Metamagnetic transition and magnetocaloric effect in ErCo2 , 1999 .