Approximate evaluation of water transport number in ion-exchange membranes

Abstract Two approximate methods for the water transport number evaluation in ion-exchange membranes (IEM) are proposed. The first one allows the evaluation from the electrical conductivity, diffusion permeability and emf apparent transport number. It can be considered as a method for complementary IEM characterisation. The second demands only the knowledge of the emf apparent transport number and gives sufficiently approximate values. Experimental data on the water transport numbers for MK-40 in KCl and CM2 in KCl, NaCl and LiCl solutions are presented and the mechanism of the water transport is discussed.

[1]  N. Lakshminarayanaiah,et al.  Transport phenomena in membranes , 1969 .

[2]  Roger Lteif,et al.  Détermination du nombre de transport d’un contre-ion dans une membrane échangeuse d’ions en utilisant la méthode de la pile de concentration , 2001 .

[3]  W. Kujawski,et al.  Irreversible thermodynamics of transport across charged membranes , 1987 .

[4]  W. F. Graydon,et al.  ION-EXCHANGE MEMBRANES. I. MEMBRANE POTENTIALS , 1955 .

[5]  S. Koter,et al.  Ions and water transport across charged nafion membranes. Irreversible thermodynamics approach , 1984 .

[6]  S. Kolaczkowski,et al.  Rationalisation of the relationship between proton leakage and water flux through anion exchange membranes , 1996 .

[7]  R. Carbonell,et al.  Ionic equilibria in ion-exchange membranes: a comparison of pore model predictions with experimental results , 1992 .

[8]  N. Kononenko,et al.  Physicochemical principles of testing ion-exchange membranes , 1996 .

[9]  Tatsuhiro Okada,et al.  Theory for water management in membranes for polymer electrolyte fuel cells: Part 1. The effect of impurity ions at the anode side on the membrane performances , 1999 .

[10]  Donald G. Miller Application of Irreversible Thermodynamics to Electrolyte Solutions. I. Determination of Ionic Transport Coefficients lij for Isothermal Vector Transport Processes in Binary Electrolyte Systems1,2 , 1966 .

[11]  C. Gardner,et al.  Comparison of the transport properties of normal and expanded forms of a cation-exchange membrane by use of an irreversible thermodynamic approach. Part I. Membranes in the sodium form in 0·1M-sodium chloride , 1971 .

[12]  G. Pourcelly,et al.  Electrotransport of sulphuric acid in special anion exchange membranes for the recovery of acids , 1994 .

[13]  B. Breslau,et al.  A Hydrodynamic Model for Electroosmosis , 1971 .

[14]  P. Schaetzel,et al.  Mass-transfer through ion exchange membranes: comparison between the diffusion and the diffusion-convection Stefan-Maxwell equations , 1997 .

[15]  C. Larchet,et al.  From the multi-ionic to the bi-ionic potential , 1996 .

[16]  C. Larchet,et al.  Conductivité membranaire: interprétation et exploitation selon le modèle à solution interstitielle hétérogène , 1999 .

[17]  Signe Kjelstrup,et al.  Ion and water transport characteristics of Nafion membranes as electrolytes , 1998 .

[18]  G. Schmid Electrochemistry of capillary systems with narrow pores. II. Electroosmosis , 1998 .

[19]  Victor Nikonenko,et al.  Correlation between transport parameters of ion-exchange membranes , 2002 .

[20]  N. Berezina,et al.  Electrolyte diffusion through ion-exchange membranes , 1994 .

[21]  N. Berezina,et al.  Water electrotransport in membrane systems. Experiment and model description , 1994 .

[22]  G. Scatchard Ion Exchanger Electrodes , 1953 .