Coupled channel description of 16O+142,144,146Nd scattering around the Coulomb barrier using a complex microscopic potential

[1]  C. Muntele,et al.  in a , 2000 .

[2]  J. C. Pacheco,et al.  Nuclear structure effects on the absorption in the scattering of heavy ions at low energy , 1999 .

[3]  S. Mandal,et al.  Preparation and characterization of a sandwiched target of enriched neodymium oxide , 1997 .

[4]  M. Hjorth-Jensen,et al.  Extended shell model calculation for even N = 82 isotones with a realistic effective interaction , 1996, nucl-th/9612064.

[5]  J. Christley,et al.  Effective polarization potentials as a tool for probing near-barrier reaction mechanisms , 1996 .

[6]  J. Ferrero,et al.  Surface absorption in the 32S + 24Mg interactions at energies near the coulomb barrier , 1995 .

[7]  J. Christley,et al.  The threshold anomaly in the 16O + 58,60,62,64Ni systems , 1995 .

[8]  H. Bohlen,et al.  Double-folding model for heavy-ion optical potential: Revised and applied to study 12C and 16O elastic scattering. , 1994, Physical review. C, Nuclear physics.

[9]  R. Perrino,et al.  Excitation of low-lying states in 144Nd by means of (e,e') scattering , 1993 .

[10]  J. Ferrero,et al.  Sub- and near-barrier fusion potentials and cross sections , 1993 .

[11]  R. Perrino,et al.  STRENGTH DISTRIBUTIONS IN NEODYMIUM ISOTOPES - A TEST OF COLLECTIVE NUCLEAR-MODELS , 1993 .

[12]  W. Oertzen,et al.  A nuclear matter study using the density dependent M3Y interaction , 1993 .

[13]  Pacheco,et al.  Comment on "Dynamical polarization potential due to the excitation of collective states" , 1993, Physical review. C, Nuclear physics.

[14]  H. D. Vries,et al.  Electron-scattering investigation of the low-lying states in 150Nd , 1993 .

[15]  A. Baeza,et al.  Isotopic effects and surface absorption in 35,37Cl+24Mg interactions , 1992 .

[16]  Chou,et al.  Construction of shell-model interactions for Z >~ 50, N >~ 82 nuclei: Predictions for A=133-134 beta - decays. , 1992, Physical review. C, Nuclear physics.

[17]  Ponomarev,et al.  Interplay between single-particle and collective degrees of freedom in the excitation of the low-lying states in 140Ce. , 1991, Physical review. C, Nuclear physics.

[18]  J. Ferrero,et al.  Low-energy 16O + 208Pb elastic scattering , 1991 .

[19]  J. Ferrero,et al.  Dispersion relation for microscopic heavy-ion potentials and description of elastic scattering above the coulomb barrier for 32S on 40Ca , 1991 .

[20]  Brown,et al.  Appraisal of the Kuo-Herling shell-model interaction and application to A=210-212 nuclei. , 1991, Physical review. C, Nuclear physics.

[21]  G. R. Satchler Heavy-ion scattering and reactions near the Coulomb barrier and “threshold anomalies” , 1991 .

[22]  A. Baeza,et al.  Elastic scattering of 35Cl and 37Cl on 24Mg , 1990 .

[23]  A. Sitenko,et al.  DIRECT NUCLEAR REACTIONS , 1990 .

[24]  H. Esbensen,et al.  Coupled-channels calculations for transfer reactions , 1989 .

[25]  N. Mau A consistent derivation of the real and imaginary parts of the heavy ion potential below and above the Coulomb barrier , 1987 .

[26]  B. A. Brown,et al.  Core polarization effects on transition densities in medium-heavy nuclei , 1987 .

[27]  N. Mau Closure approximation to the absorptive potential in heavy ion scattering , 1986 .

[28]  J. Ferrero,et al.  Folding-model analysis of the inelastic scattering of 32S on 40Ca at 100, 120 and 151.5 MeV , 1986 .

[29]  C. Mahaux,et al.  Causality and the threshold anomaly of the nucleus-nucleus potential , 1986 .

[30]  M. Beckerman Subbarrier fusion of atomic nuclei , 1985 .

[31]  M. Rhoades-Brown,et al.  Calculation of the complete reaction cross section for 16O + 208Pb near the Coulomb barrier , 1985 .

[32]  I. Thompson,et al.  Energy dependence of the 16O + 60Ni potential and the optical model dispersion relation , 1985 .

[33]  I. Thompson,et al.  Contribution of multistep transfers to low-energy elastic and reaction cross sections , 1985 .

[34]  Nagarajan,et al.  Dispersion relation and the low-energy behavior of the heavy-ion optical potential. , 1985, Physical review letters.

[35]  I. Thompson,et al.  Evidence for a progressive failure of the double folding model at energies approaching the Coulomb barrier , 1985 .

[36]  D. Brink,et al.  Proximity limit of the imaginary part of the heavy ion optical potential due to nucleon transfer , 1984 .

[37]  A. Baeza,et al.  Energy-dependent renormalization coefficients of folding-model description of 32S+40Ca elastic scattering , 1984 .

[38]  R. Broglia,et al.  Calculation of the imaginary part of the heavy ion potential , 1983 .

[39]  O. Scholten,et al.  THE N = 82 ISOTONES IN THE GENERALIZED SENIORITY SCHEME , 1983 .

[40]  R. Broglia,et al.  On the absorptive potential in heavy ion scattering , 1981 .

[41]  G. R. Satchler A comparative study of the scattering of light heavy ions using a folding model , 1979 .

[42]  G. R. Satchler,et al.  Folding model potentials from realistic interactions for heavy-ion scattering , 1979 .

[43]  R. Broglia Heavy ion reactions , 1978, Nature.

[44]  D. C. Hensley,et al.  Multistep effects in the elastic and inelastic scattering of 70. 4-MeV /sup 12/C ions from the even neodymium isotopes , 1977 .

[45]  G. Bertsch,et al.  Interactions for inelastic scattering derived from realistic potentials , 1977 .

[46]  André Lejeune,et al.  Optical-model potential in finite nuclei from Reid's hard core interaction , 1977 .

[47]  J. B. McGrory Shell-Model Spectroscopy of f-p-Shell Nuclei with A=44 , 1973 .

[48]  Herman Feshbach,et al.  A Unified Theory of Nuclear Reactions, II , 1962 .

[49]  H. Feshbach Unified Theory of Nuclear Reactions , 1958 .

[50]  L. Tassie A Model of Nuclear Shape Oscillations for g?Transitions and Electron Excitation , 1956 .