Parallel Inexact Constraint Preconditioners for Saddle Point Problems

In this paper we propose a parallel implementation of the FSAI preconditioner to accelerate the PCG method in the solution of symmetric positive definite linear systems of very large size. This preconditioner is used as building block for the construction of an indefinite Inexact Constraint Preconditioner (ICP) for saddle point-type linear systems arising from Finite Element (FE) discretization of 3D coupled consolidation problems. The FSAI-ICP preconditioner, based on an efficient approximation of the inverse of the (1, 1) block proves very effective in the acceleration of the BiCGSTAB iterative solver in parallel environments. Numerical results on a number of realistic test cases of size up to 6×106 unknowns and 3×108 nonzeros show the almost perfect scalability of the overall code up to 512 processors.

[1]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[2]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[3]  G. Gambolati,et al.  3D Geomechanics In UGS Projects. A Comprehensive Study In Northern Italy , 2010 .

[4]  G. Gambolati,et al.  Anthropogenic Venice uplift by seawater pumping into a heterogeneous aquifer system , 2010 .

[5]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[6]  Jack Dongarra,et al.  High Performance Computing for Computational Science - VECPAR 2004, 6th International Conference, Valencia, Spain, June 28-30, 2004, Revised Selected and Invited Papers , 2005, VECPAR.

[7]  Marco Vianello,et al.  A massively parallel exponential integrator for advection-diffusion models , 2009, J. Comput. Appl. Math..

[8]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[9]  Luca Bergamaschi,et al.  On eigenvalue distribution of constraint‐preconditioned symmetric saddle point matrices , 2012, Numer. Linear Algebra Appl..

[10]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[11]  Lily Yu. Kolotilina,et al.  Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising efficiency , 1999, Numer. Linear Algebra Appl..

[12]  Daniela di Serafino,et al.  DIPARTIMENTO DI MATEMATICA , 2008 .

[13]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[14]  Carlo Janna,et al.  A comparison of projective and direct solvers for finite elements in elastostatics , 2009, Adv. Eng. Softw..

[15]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[16]  Luca Bergamaschi,et al.  Parallel Acceleration of Krylov Solvers by Factorized Approximate Inverse Preconditioners , 2004, VECPAR.

[17]  Luca Bergamaschi,et al.  An Efficient Parallel MLPG Method for Poroelastic Models , 2009 .

[18]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[19]  Carlo Janna,et al.  Mixed constraint preconditioning in computational contact mechanics , 2008 .

[20]  Luca Bergamaschi,et al.  Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations , 2008, J. Comput. Phys..

[21]  Solomon L. Pollack,et al.  Proceedings of the 1969 24th national conference , 1969 .

[22]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..