Performance of inverse atomistic scale fracture modeling on GPGPU architectures

Abstract The present work has been motivated by the continuous growth of General Purpose Graphic Processor Unit (GPGPU) technologies as well as the necessity of linking usability with multiscale materials processing and design. The inverse problem of determining the phenomenological interparticle Lenard-Jones potential governing the fracture dynamics of a two dimensional structure under tension, is used to examine the feasibility and efficiency of utilizing GPGPU architectures. The implementation of this inverse problem under a molecular dynamics framework provides verification of this methodology. The main contribution of this paper is a performance evaluation driven sensitivity analysis that is contacted on GPGPU-enabled hardware in order to examine efficiency relative to various combinations of GPGPU and Central Processing Unit (CPU) cores as a function of problem size. In particular, speedup factors are determined relative to various number of core combinations of a quad core processor.

[1]  Boris,et al.  Molecular-dynamics simulations of shock-induced detonations in solids. , 1989, Physical review. B, Condensed matter.

[2]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[3]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[4]  William G. Hoover,et al.  Microscopic fracture studies in the two-dimensional triangular lattice , 1976 .

[5]  Steven J. Plimpton,et al.  Porting LAMMPS to GPUs. , 2010 .

[6]  R. Clausius,et al.  XVI. On a mechanical theorem applicable to heat , 1870 .

[7]  Holian,et al.  Fracture simulations using large-scale molecular dynamics. , 1995, Physical review. B, Condensed matter.

[8]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[9]  Weiguo Liu,et al.  Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA , 2008, Comput. Phys. Commun..

[10]  Yunfei Chen,et al.  GPU accelerated molecular dynamics simulation of thermal conductivities , 2007, J. Comput. Phys..

[11]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[12]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[13]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[14]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[15]  David M. Beazley,et al.  Message-Passing Multi-Cell Molecular Dynamics on the Connection Machine 5 , 1994, Parallel Comput..

[16]  S. G. Lambrakos,et al.  Calculating complex interactions in molecular dynamics simulations employing Lagrangian particle tracking schemes , 1994 .

[17]  D. M. Etter,et al.  Introduction to MATLAB for Engineers and Scientists , 1996 .

[18]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[19]  D. Farkas,et al.  Molecular Dynamics Investigation on the Fracture Behavior of Nanocrystalline Fe , 2002 .

[20]  Hubert Nguyen,et al.  GPU Gems 3 , 2007 .

[21]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .

[22]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[23]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[24]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[25]  Vijay S. Pande,et al.  Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..

[26]  Eugene N. Parker,et al.  THE TENSOR VIRIAL EQUATIONS , 1954 .