Hierarchical mode I interlaminar toughening of unidirectional CFRP laminates by the synergistic effects of CNT powders and veils

[1]  Guoqun Zhao,et al.  Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites , 2022, Materials & Design.

[2]  Yunfu Ou,et al.  Assessment of stress transfer in laminated structural power composites produced with mechanically-connected electric double-layer capacitors , 2021, Composites Science and Technology.

[3]  Constantinos Soutis,et al.  Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils , 2021, The Aeronautical Journal.

[4]  Ling-Ling Liu,et al.  High crack self-healing efficiency and enhanced free-edge delamination resistance of carbon fibrous composites with hierarchical interleaves , 2021, Composites Science and Technology.

[5]  Hongbing Lu,et al.  Using ultra-thin interlaminar carbon nanotube sheets to enhance the mechanical and electrical properties of carbon fiber reinforced polymer composites , 2021, Composites Part B: Engineering.

[6]  Yunfu Ou,et al.  Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils , 2020, 2012.00071.

[7]  S. Joshi,et al.  A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites , 2020, Materials Today Communications.

[8]  Carlos Gonz'alez,et al.  Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils , 2019, Composites Part A: Applied Science and Manufacturing.

[9]  T. Brugo,et al.  The effect of thickness of Nylon 6,6 nanofibrous mat on Modes I-II fracture mechanics of UD and woven composite laminates , 2016 .

[10]  Ling-Ling Liu,et al.  Improving the interlaminar fracture toughness of carbon/epoxy laminates by directly incorporating with porous carbon nanotube buckypaper , 2016 .

[11]  M. Taha,et al.  Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes , 2015 .

[12]  B. Wardle,et al.  Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes , 2014 .

[13]  Lipeng Liu,et al.  Simultaneously increasing the electrical conductivity and fracture toughness of carbon–fiber composites by using silver nanowires-loaded interleaves , 2014 .

[14]  G. Lubineau,et al.  Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes , 2014 .

[15]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[16]  Tsu-Wei Chou,et al.  State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges , 2012, Advanced materials.

[17]  Alan H. Windle,et al.  The hierarchical structure and properties of multifunctional carbon nanotube fibre composites , 2012 .

[18]  David Hui,et al.  Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes , 2011 .

[19]  Stepan Vladimirovitch Lomov,et al.  The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix , 2010 .

[20]  Ignace Verpoest,et al.  Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites , 2009 .

[21]  K. Schulte,et al.  Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites , 2008 .

[22]  Cheng‐Chien Wang,et al.  Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-Integrated Epoxy Composites , 2007 .

[23]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[24]  S. R. Ahmad,et al.  Characterisation of carbon nanotube materials by Raman spectroscopy and microscopy - A case study of multiwalled and singlewalled samples , 2004 .

[25]  X. An,et al.  Ex‐situ Formation Periodic Interlayer Structure to Improve Significantly the Impact Damage Resistance of Carbon Laminates , 2003 .

[26]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[27]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[28]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.