SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography.

We present the analyses of surface plasmon polaritons (SPPs) coupling induced interference in metal/dielectric (M/D) multilayer metamaterials and techniques to improve the performance of sub-wavelength plasmonic lithography. Expressions of beam spreading angles and interference patterns are derived from analyses of numerical simulations and the coupled mode theory. The new understandings provide useful guidelines and design criteria for plasmonic lithography. With proper layer structure design, sub-wavelength uniform periodic patterns with feature size of 1/12 of the mask's period can be realized. High pattern contrast of 0.8 and large field depth of 80 nm are also demonstrated numerically by considering the SPPs coupling in the photoresist. Both high contrast and large image depth are crucial for practical application of plasmonic lithography.

[1]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[2]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[3]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[4]  Bing Wang,et al.  Surface plasmon polariton propagation in nanoscale metal gap waveguides. , 2004, Optics letters.

[5]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[6]  A. Locatelli,et al.  Diffraction engineering in arrays of photonic crystal waveguides. , 2005, Optics letters.

[7]  Vladimir M. Shalaev,et al.  Superlens based on metal-dielectric composites , 2005 .

[8]  Shanhui Fan,et al.  All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. , 2006, Physical review letters.

[9]  Guo Ping Wang,et al.  Nanoscale metal waveguide arrays as plasmon lenses. , 2006, Optics letters.

[10]  Guo Ping Wang,et al.  All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. , 2006, Physical review letters.

[11]  R. Blaikie,et al.  Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. , 2007, Optics express.

[12]  Changtao Wang,et al.  Sub-diffraction-limited interference photolithography with metamaterials. , 2008, Optics express.

[13]  K. Crozier,et al.  Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index. , 2009, Optics express.

[14]  Zongfu Yu,et al.  Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array , 2009 .

[15]  S. Thongrattanasiri,et al.  Hypergratings: nanophotonics in planar anisotropic metamaterials. , 2008, Optics letters.

[16]  Changtao Wang,et al.  Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. , 2009, Optics express.

[17]  Zongfu Yu,et al.  Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array , 2009, OPTO.

[18]  M. Fiddy,et al.  Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths. , 2010, Optics express.