Novel approach to the analysis of spatially-varying treatment effects in on-farm experiments

Abstract With increasing interest in on-farm experiments, there is a pressing need to develop rigorous statistical methods for analysing these experiments. The adoption of advanced technologies such as yield monitors and variable-rate fertilizer applicators has enabled farmers and researchers to collect biophysical data linked to spatial information at a scale which allows them to investigate the role of spatial variability in the development of optimum management practices. A relevant topic for investigation could be: “what are the optimum rates of nitrogen and how/why do these differ across the field”? Although it has been recently understood that traditional statistical methods that are appropriate for analysing small-plot experiments are inappropriate for answering these questions, a unifying approach to inference for on-farm experiments is still missing and this limits the adoption of the technique. In this paper we propose a unifying approach to the analysis of on-farm strip experiments adapting the core ideas of local likelihood or geographically weighted regression. We propose a statistical model that allows spatial nonstationarity in modelled relationships and estimates spatially-varying parameters governing these relationships. A crucial step is bandwidth selection in implementing these models, and we develop bandwidth selection methods for two important scenarios relevant to the modelling of yield monitor data in on-farm experiments. Local t-scores have been introduced for inferential purposes and the associated problem of multiple testing has been described in the context of analysing on-farm experiments. We demonstrate in this paper how local p-values can be adjusted to overcome this problem. To illustrate the applicability of our proposed method, we analysed two publicly available datasets. Graphical displays are created to guide practitioners to make informed decisions on optimal management practices.

[1]  R. M. Lark,et al.  A Method to Investigate Within‐Field Variation of the Response of Combinable Crops to an Input , 2003 .

[2]  R. Kempton,et al.  Statistical analysis of two-dimensional variation in variety yield trials , 1994, The Journal of Agricultural Science.

[3]  C. Loader Local Likelihood Density Estimation , 1996 .

[4]  Alexander Brenning,et al.  Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[5]  R. Bramley,et al.  A Simple Method for the Analysis of On‐Farm Strip Trials , 2012 .

[6]  Christopher D. Lloyd,et al.  Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom , 2009 .

[7]  Martin Charlton,et al.  GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models , 2013, 1306.0413.

[8]  H. Piepho,et al.  A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels , 2018 .

[9]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[10]  A. Stewart Fotheringham,et al.  “The Problem of Spatial Autocorrelation” and Local Spatial Statistics , 2009 .

[11]  A. Stewart Fotheringham,et al.  Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor , 2011 .

[12]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[13]  H. Piepho,et al.  Beyond Latin Squares: A Brief Tour of Row‐Column Designs , 2015 .

[14]  Brett Whelan,et al.  The Analysis of Spatial Experiments , 2010 .

[15]  B. Cullis,et al.  Enhanced diagnostics for the spatial analysis of field trials , 2009 .

[16]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[17]  Edzer J. Pebesma,et al.  Applied Spatial Data Analysis with R - Second Edition , 2008, Use R!.

[18]  Roger Bivand,et al.  Spatial econometrics functions in R: Classes and methods , 2002, J. Geogr. Syst..

[19]  Hans-Peter Piepho,et al.  Statistical aspects of on-farm experimentation , 2011 .

[20]  R. Woodward,et al.  Increasing Precision in Agronomic Field Trials Using Latin Square Designs , 2015 .

[21]  D. Mueller,et al.  Differences in Small Plot and On-Farm Trials for Yield Response to Foliar Fungicide in Soybean. , 2018, Plant Disease.

[22]  Antonio Paez Anisotropic Variance Functions in Geographically Weighted Regression Models , 2004 .

[23]  M. Charlton,et al.  Some Notes on Parametric Significance Tests for Geographically Weighted Regression , 1999 .

[24]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[25]  M. C. Jones,et al.  Locally parametric nonparametric density estimation , 1996 .

[26]  Weikai Yan,et al.  On‐Farm Strip Trials vs. Replicated Performance Trials for Cultivar Evaluation , 2002 .

[27]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[28]  Martin Charlton,et al.  Spatial Nonstationarity and Autoregressive Models , 1998 .

[29]  A. Stewart Fotheringham,et al.  Multiscale Geographically Weighted Regression (MGWR) , 2017 .

[30]  H. Piepho,et al.  Linear variance models for plant breeding trials , 2010 .

[31]  A. Fotheringham,et al.  The Multiple Testing Issue in Geographically Weighted Regression , 2016 .

[32]  Jukka Heikkonen,et al.  The spatial leave-pair-out cross-validation method for reliable AUC estimation of spatial classifiers , 2018, Data Mining and Knowledge Discovery.

[33]  R. Bramley,et al.  Precision agriculture — opportunities, benefits and pitfalls of site-specific crop management in Australia , 1998 .

[34]  A. Páez,et al.  Geographically Weighted Regression , 2021, Handbook of Regional Science.

[35]  Jukka Heikkonen,et al.  Estimating the prediction performance of spatial models via spatial k-fold cross validation , 2017, Int. J. Geogr. Inf. Sci..

[36]  Daren S. Mueller,et al.  On‐Farm Replicated Strip Trials , 2018 .

[37]  Dayton M. Lambert,et al.  A Comparison of Four Spatial Regression Models for Yield Monitor Data: A Case Study from Argentina , 2004, Precision Agriculture.

[38]  Carlo Gaetan,et al.  Spatial Statistics and Modeling , 2009 .

[39]  Terry W. Griffin,et al.  Worldwide adoption and profitability of precision agriculture Implications for Brazil , 2005 .

[40]  A. Páez,et al.  A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity , 2002 .

[42]  Hans-Peter Piepho,et al.  A Hitchhiker's guide to mixed models for randomized experiments , 2003 .

[43]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[44]  R. A. Bailey,et al.  Design of comparative experiments , 2008 .

[45]  T. Caliński,et al.  Block designs : a randomization approach , 2000 .

[46]  Martin Charlton,et al.  Multiple Dependent Hypothesis Tests inGeographically Weighted Regression , 2009 .

[47]  Hans-Peter Piepho,et al.  Why Randomize Agricultural Experiments , 2013 .

[48]  B. Brorsen,et al.  Using yield monitor data to guide precision nitrogen application , 2019, Precision Agriculture.

[49]  S. Welham,et al.  Establishing the precision and robustness of farmers’ crop experiments , 2019, Field Crops Research.

[50]  Martin Charlton,et al.  The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models , 2013, Geo spatial Inf. Sci..

[51]  Jane Elith,et al.  blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models , 2018, bioRxiv.

[52]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[53]  P. J. Andralojc,et al.  Stability of wheat grain yields over three field seasons in the UK , 2018, Food and energy security.

[54]  A. Baddeley Local composite likelihood for spatial point processes , 2017 .

[55]  Jack C. Yue,et al.  A modification to geographically weighted regression , 2017, International Journal of Health Geographics.

[56]  Paul Harris,et al.  A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing between Autocorrelation and Heterogeneity Effects , 2019 .

[57]  C. Lloyd Local Models for Spatial Analysis , 2006 .

[58]  Craig L. Dobbins,et al.  Spatial analysis of yield monitor data: case studies of on-farm trials and farm management decision making , 2008, Precision Agriculture.

[59]  T. Hastie,et al.  [Local Regression: Automatic Kernel Carpentry]: Rejoinder , 1993 .

[60]  R. Bailey Experiments in Rectangular Areas: Design and Randomization , 2012 .

[61]  E. Pebesma,et al.  Classes and Methods for Spatial Data , 2015 .

[62]  Martin Charlton,et al.  Geographically weighted regression with parameter-specific distance metrics , 2017, Int. J. Geogr. Inf. Sci..

[63]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[64]  Alexander Brenning,et al.  Data Mining in Precision Agriculture: Management of Spatial Information , 2010, IPMU.

[65]  Davide Martinetti,et al.  A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models , 2017, Regional Science and Urban Economics.

[66]  Vincent Bretagnolle,et al.  Spatial leave‐one‐out cross‐validation for variable selection in the presence of spatial autocorrelation , 2014 .

[67]  Steven Farber,et al.  A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations , 2007, J. Geogr. Syst..

[68]  S. M. Lesch,et al.  Delineating Site-Specific Management Units with Proximal Sensors , 2010 .

[69]  S. Fotheringham,et al.  Geographically Weighted Regression , 1998 .

[70]  R. G. V. Bramley,et al.  Enhancing the value of field experimentation through whole-of-block designs , 2010, Precision Agriculture.

[71]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[72]  Brian R. Cullis,et al.  Accounting for natural and extraneous variation in the analysis of field experiments , 1997 .

[73]  H. Piepho,et al.  More, Larger, Simpler: How Comparable Are On‐Farm and On‐Station Trials for Cultivar Evaluation? , 2018 .

[74]  Tim Wark,et al.  Prospects for yield improvement in the Australian wheat industry: a perspective , 2016 .

[75]  Yee Leung,et al.  Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression , 2000 .

[76]  Martin Charlton,et al.  Two techniques for exploring non-stationarity in geographical data , 1997 .

[77]  Martin Charlton,et al.  The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets , 2010 .

[78]  Simon E. Cook,et al.  On-farm experimentation. , 2013 .

[79]  M. Wand Local Regression and Likelihood , 2001 .

[80]  R. G. V. Bramley,et al.  Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects , 2011, Precision Agriculture.