Negative Poisson's ratio and piezoelectric anisotropy of tetragonal ferroelectric single crystals

Orientational dependences of the Poisson's ratio have been calculated for several perovskite tetragonal ferroelectric singe crystals: 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3, PbTiO3, and BaTiO3. All these crystals are shown to have negative values of Poisson's ratio in some crystallographic directions thus being so-called partial auxetics. The largest negative Poisson's ratio values possess 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. The thermodynamic restrictions for the d33 and d31 piezoelectric moduli of the tetragonal crystals have been revealed. The relation between Poisson's ratio and piezoelectric properties of perovskite tetragonal ferroelectric singe crystals is discussed.

[1]  T. Lupeiko,et al.  Old and New Problems in Piezoelectric Materials Research and Materials with High Hydrostatic Sensitivity , 2004 .

[2]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals , 2001 .

[3]  A. Safari Development of piezoelectric composites for transducers , 1994 .

[4]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[5]  D. Heyes,et al.  Auxeticity of cubic materials under pressure , 2011 .

[6]  V. Aleshin,et al.  Electromechanical properties of a textured ceramic material in the (1 − x)PMN-xPT system: Simulation based on the effective-medium method , 2008 .

[7]  C. Bowen,et al.  Characteristics of 1–3-type ferroelectric ceramic/auxetic polymer composites , 2007 .

[8]  Zoe A. D. Lethbridge,et al.  Elastic anisotropy and extreme Poisson's ratios in single crystals , 2010 .

[9]  M. Lethiecq,et al.  Modeling of highly loaded 0-3 piezoelectric composites using a matrix method , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Dragan Damjanovic Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics , 2005 .

[11]  M. Kahn Acoustic and Elastic Properties of PZT Ceramics with Anisotropic Pores , 1985 .

[12]  D. Heyes,et al.  Cubic materials in different auxetic regions: Linking microscopic to macroscopic formulations , 2012 .

[13]  A. Ballato,et al.  Poisson's ratios of auxetic and other technological materials , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  M. P. Shaskolskaya,et al.  Fundamentals of Crystal Physics , 1983 .

[15]  R. Meyer,et al.  Processing, texture quality, and piezoelectric properties of C textured (1-x)Pb(Mg1/3Nb2/3)TiO3 - xPbTiO3 ceramics , 2011 .

[16]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[17]  K. Wojciechowski Poisson’s ratio of anisotropic systems , 2005 .

[18]  Matthew J. Davis,et al.  Correlation between dielectric anisotropy and positive or zero transverse piezoelectric coefficients in perovskite ferroelectric single crystals , 2005 .

[19]  A. F. Devonshire CIX. Theory of barium titanate—Part II , 1951 .