Tauberian theorems for Jakimovski and Karamata-Stirling methods
暂无分享,去创建一个
[1] N. Bingham,et al. Summability methods and almost sure convergence , 1985 .
[2] N. Bingham. Tauberian Theorems for Summability Methods of Random‐Walk Type , 1984 .
[3] N. Bingham. On Borel and Euler Summability , 1984 .
[4] J. P. Imhof. Stirling Numbers and Records , 1983, J. Comb. Theory, Ser. A.
[5] Tauber-Sätze undM-Perfektheit , 1981 .
[6] N. Bingham. TAUBERIAN THEOREMS AND THE CENTRAL LIMIT THEOREM , 1981 .
[7] J. Fridy,et al. TAUBERIAN THEOREMS FOR MATRICES GENERATED BY ANALYTIC FUNCTIONS , 1981 .
[8] K. Zeller,et al. Abschnittskonvergenz und Umkehrsätze beim Euler-Verfahren , 1978 .
[9] Edward A. Bender,et al. Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.
[10] E. Lieb. Concavity properties and a generating function for stirling numbers , 1968 .
[11] L. Harper. Stirling Behavior is Asymptotically Normal , 1967 .
[12] D. Gaier. On the Coefficients and the Growth of Gap Power Series , 1966 .
[13] D. Gaier. Der allgemeine Lückenumkehrsatz für das Borel-Verfahren , 1965 .
[14] C. L. Mallows,et al. Some Aspects of the Random Sequence , 1965 .
[15] K. Zeller,et al. On Borel’s method of summability , 1960 .
[16] R. Agnew. Relations among the Lototsky, Borel and other methods for evaluation of series. , 1959 .
[17] V. Vuckovic. The mutual inclusion of Karamata-Stirling methods of summation. , 1959 .
[18] Amnon Jakimovski,et al. A generalization of the Lototsky method of summability. , 1959 .
[19] R. Agnew. The Lototsky method for evaluation of series. , 1957 .
[20] Lückenumkehrsätze und Lückenperfektheit , 1956 .
[21] Ein funktionentheoretischer Beweis fÜrO-Taubersätze bei den Verfahren von Borel und Euler-Knopp , 1956 .
[22] W. Meyer-König. Untersuchungen über einige verwandte Limitierungsverfahren , 1950 .
[23] Über das Eulersche Summierungsverfahren , 1922 .