The evolution of chikungunya virus circulating in Indonesia: Sequence analysis of the orf2 gene encoding the viral structural proteins

[1]  M. S. Hakim,et al.  The origin and continuing adaptive evolution of chikungunya virus. , 2022, Archives of virology.

[2]  Chenglin Deng,et al.  High-Titer Self-Propagating Capsidless Chikungunya Virus Generated in Vero Cells as a Strategy for Alphavirus Vaccine Development , 2022, Journal of virology.

[3]  H. Harapan,et al.  Co-Circulation of Chikungunya and Multiple DENV Serotypes and Genotypes, Western Indonesia 2015–2016 , 2022, Viruses.

[4]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[5]  R. Frutos,et al.  Fast Expansion of the Asian-Pacific Genotype of the Chikungunya Virus in Indonesia , 2021, Frontiers in Cellular and Infection Microbiology.

[6]  S. Frost,et al.  An investig-ation into the epidemiology of chikungunya virus across neglected regions of Indonesia , 2020, PLoS neglected tropical diseases.

[7]  Rebecca S. Brown,et al.  Multiple capsid protein binding sites mediate selective packaging of the alphavirus genomic RNA , 2020, Nature Communications.

[8]  E. Tjitra,et al.  Chikungunya in Indonesia: Epidemiology and diagnostic challenges , 2020, PLoS neglected tropical diseases.

[9]  Larissa B. Thackray,et al.  Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins , 2019, PLoS pathogens.

[10]  H. Harapan,et al.  Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis , 2019, BMC Infectious Diseases.

[11]  I. Young,et al.  A scoping review of published literature on chikungunya virus , 2018, PloS one.

[12]  J. Chu,et al.  The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies , 2018, Viruses.

[13]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[14]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[15]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[16]  J. Fazakerley,et al.  Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import , 2017, Viruses.

[17]  S. Mukhopadhyay,et al.  Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins , 2017, Viruses.

[18]  C. Carrington,et al.  Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences , 2017, Virus evolution.

[19]  P. Shu,et al.  Imported Chikungunya Virus Strains, Taiwan, 2006–2014 , 2016, Emerging infectious diseases.

[20]  A. Agarwal,et al.  Two novel epistatic mutations (E1:K211E and E2:V264A) in structural proteins of Chikungunya virus enhance fitness in Aedes aegypti. , 2016, Virology.

[21]  H. Guzmán,et al.  Genetic Characterization of Northwestern Colombian Chikungunya Virus Strains from the 2014-2015 Epidemic. , 2016, The American journal of tropical medicine and hygiene.

[22]  J. Porta,et al.  Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity , 2015, Proceedings of the National Academy of Sciences.

[23]  Pravindra Kumar,et al.  Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay , 2015, Scientific Reports.

[24]  S. Hay,et al.  Emergence and potential for spread of Chikungunya virus in Brazil , 2015, BMC Medicine.

[25]  D. Taraphdar,et al.  Molecular characterization of chikungunya virus circulating in urban and rural areas of West Bengal, India after its re-emergence in 2006. , 2015, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[26]  N. K. Susilarini,et al.  Chikungunya Virus Mutation, Indonesia, 2011 , 2015, Emerging infectious diseases.

[27]  S. Weaver,et al.  Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes , 2014, Nature Communications.

[28]  U. Balasuriya,et al.  Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses , 2013, Clinical and experimental vaccine research.

[29]  B. Alisjahbana,et al.  Evidence for Endemic Chikungunya Virus Infections in Bandung, Indonesia , 2013, PLoS neglected tropical diseases.

[30]  M. V. van Hemert,et al.  Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates , 2013, PloS one.

[31]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[32]  A. Wilm,et al.  LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets , 2012, Nucleic acids research.

[33]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[34]  E. Konishi,et al.  Primary isolation and phylogenetic studies of Chikungunya virus from Surabaya, Indonesia. , 2012, Japanese journal of infectious diseases.

[35]  S. Weaver,et al.  Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence , 2011, PLoS pathogens.

[36]  F. Rey,et al.  Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography , 2010, Nature.

[37]  M. Rossmann,et al.  Structural Changes of Envelope Proteins During Alphavirus Fusion , 2010, Nature.

[38]  P. Shu,et al.  Imported Chikungunya Virus Strains, Taiwan, 2006–2009 , 2009, Emerging infectious diseases.

[39]  S. Higgs,et al.  Epistatic Roles of E2 Glycoprotein Mutations in Adaption of Chikungunya Virus to Aedes Albopictus and Ae. Aegypti Mosquitoes , 2009, PloS one.

[40]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[41]  H. Tomaso,et al.  Clinical and virological characterization of imported cases of Chikungunya fever , 2008, Wiener klinische Wochenschrift.

[42]  S. Higgs,et al.  A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential , 2007, PLoS pathogens.

[43]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[44]  Frank Kunst,et al.  Genome Microevolution of Chikungunya Viruses Causing the Indian Ocean Outbreak , 2006, PLoS medicine.

[45]  M. Bangs,et al.  Tracking the re-emergence of epidemic chikungunya virus in Indonesia. , 2005, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[46]  A. Koschinski,et al.  Entry of alphaviruses at the plasma membrane converts the viral surface proteins into an ion-permeable pore that can be detected by electrophysiological analyses of whole-cell membrane currents. , 2003, The Journal of general virology.

[47]  K. Morita,et al.  Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. , 2002, The Journal of general virology.

[48]  R. Kuhn,et al.  Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. , 1995, Proceedings of the National Academy of Sciences of the United States of America.