Rbust control of linear systems with real parametric uncertainty

We discuss the problem of robust controller synthesis to provide quadratic stability and a desirable disturbance attenuation level (through an appropriately small L"2 gain) for systems with time-varying, real parametric uncertainty. Through the use of skewsymmetric matrices, the conservatism of standard scaled H"~ approach is reduced. While the full state feedback problem is convex, the output feedback problem is not. A set of conditions under which the design of output feedback controllers can be broken into two sequential convex problems is presented. The results are compared with recent results concerning the design of parameter-varying controllers and a simple result regarding the mixed problem (where some of the unknown parameters can be measured on-line) is discussed.

[1]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[2]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[3]  Lihua Xie,et al.  H/sub infinity / control and quadratic stabilization of systems with parameter uncertainty via output feedback , 1992 .

[4]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[5]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[6]  Jakob Stoustrup,et al.  Robust performance of systems with structured uncertainties in state space , 1995, Autom..

[7]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[8]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[9]  A. Packard,et al.  Optimal, constant I/O similarity scaling for full-information and state-feedback control problems , 1992 .

[10]  Pierre Apkarian,et al.  Parameter Varying Control of a High-Performance Aircraft , 1996 .

[11]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[12]  M. Corless,et al.  Systems with structured uncertainty: relations between quadratic and robust stability , 1993, IEEE Trans. Autom. Control..

[13]  Plateau de Moulon IMPROVED LINEAR MATRIX INEQUALITY CONDITIONS FOR GAIN SCHEDULING , 1995 .

[14]  Karolos M. Grigoriadis,et al.  Fixed-order control design for LMI control problems using alternating projection methods , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[15]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[16]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[17]  Athanasios Sideris,et al.  H ∞ control with parametric Lyapunov functions , 1997 .

[18]  P. Apkarian,et al.  A Linear Matrix Inequality Approach toH 1 , 1994 .

[19]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .