MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers
暂无分享,去创建一个
Maciej Bugajski | Jan Muszalski | Piotr Karbownik | I. Sankowska | Piotr Gutowski | Dorota Pierścińska | Kamil Pierściński | Emilia Pruszyńska-Karbownik | Olga Serebrennikova | M. Bugajski | J. Muszalski | D. Pierścińska | K. Pierściński | K. Gołaszewska-Malec | E. Pruszyńska-Karbownik | P. Gutowski | P. Karbownik | I. Sankowska | M. Morawiec | Krystyna Gołaszewska-Malec | M. Morawiec | O. Serebrennikova
[1] F. Capasso,et al. Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers , 2017 .
[2] Design of strain-compensated InxGa1-xAs/InyAl1-yAs quantum cascade laser structures towards the shorter wavelengths , 2009 .
[3] Jan Muszalski,et al. The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods , 2009 .
[4] Manijeh Razeghi,et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency , 2008 .
[5] Federico Capasso,et al. 1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm , 2008 .
[6] Z. G. Wang,et al. Growth of a periodic InP-based heteroepitaxial structure for a quantum cascade laser , 2005 .
[7] Maciej Bugajski,et al. Mid‐IR quantum cascade lasers: Device technology and non‐equilibrium Green's function modeling of electro‐optical characteristics , 2014 .
[8] Maciej Bugajski,et al. Room-temperature AlInAs/InGaAs/InP quantum cascade lasers , 2011 .
[9] Moison,et al. Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures. , 1989, Physical review. B, Condensed matter.
[10] Dan Botez,et al. Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers , 2016 .
[11] Robin K. Huang,et al. OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers , 2008 .
[12] T. Sonoda,et al. Less than 10 defects/cm2 · μm in molecular beam epitaxy grown GaAs by arsenic cracking , 1995 .
[13] N. Watanabe,et al. Origin of oval defects in GaAs layers grown by molecular beam epitaxy , 1985 .
[14] Mykhaylo P. Semtsiv,et al. Semi-insulating InP:Fe for buried-heterostructure strain-compensated quantum-cascade lasers grown by gas-source molecular-beam epitaxy , 2013 .
[15] M. Semtsiv,et al. Growth initiation for buried-heterostructure quantum-cascade laser regrowth by gas-source molecular-beam epitaxy , 2014 .
[16] Correlation of the MBE growth temperature, material quality, and performance of quantum cascade lasers , 2013 .
[17] Maciej Bugajski,et al. The influence of the growth temperature and interruption time on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods , 2008 .
[18] Paul R. Berger,et al. Growth and properties of In0.52Al0.48As/In0.53Ga0.47As, GaAS: In and InGaAs/GaAs multilayers , 1987 .
[19] Robin K. Huang,et al. Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials , 2010 .
[20] F. Capasso,et al. High power (>5 W) λ∼9.6 μm tapered quantum cascade lasers grown by OMVPE , 2013 .
[21] Bowei Xu,et al. Growth and characterization of InGaAs/InAlAs quantum cascade lasers , 2001 .
[22] Ryoichi Ito,et al. Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells , 1992 .
[23] Federico Capasso,et al. Optimization of growth conditions for InGaAs/InAlAs/InP quantum cascade lasers by metalorganic chemical vapor deposition , 2011 .