Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells.

Versatile dyes based on benzothiadiazole and benzoselenadiazole chromophores have been developed that perform efficiently in dye-sensitized solar cells. Power conversion efficiency of 3.77% is realized for a dye in which charge recombination is probably hindered by the nonplanar charge-separated structure.

[1]  Hironori Arakawa,et al.  Novel Conjugated Organic Dyes for Efficient Dye‐Sensitized Solar Cells , 2005 .

[2]  S. Fukuzumi,et al.  Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters. , 2005, The journal of physical chemistry. B.

[3]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[4]  Yong Cao,et al.  Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices , 2005 .

[5]  K. Ogawa,et al.  Role of the special pair in the charge-separating event in photosynthesis. , 2004, Chemistry.

[6]  C. Bignozzi,et al.  Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors , 2004 .

[7]  O. Inganäs,et al.  Influence of buffer layers on the performance of polymer solar cells , 2004 .

[8]  Xianyu Deng,et al.  Fluorene-based low band-gap copolymers for high performance photovoltaic devices , 2004 .

[9]  J. Navarro,et al.  Mineralomimetic sodalite- and muscovite-type coordination frameworks. Dynamic crystal-to-crystal interconversion processes sensitive to ion pair recognition. , 2004, Journal of the American Chemical Society.

[10]  M. Yus,et al.  Metalated heterocycles and their applications in synthetic organic chemistry. , 2004, Chemical reviews.

[11]  J. Hummelen,et al.  Polyfluorene copolymer based bulk heterojunction solar cells , 2004 .

[12]  Q. Hou,et al.  High-Efficiency Saturated Red Emitting Polymers Derived from Fluorene and Naphthoselenadiazole , 2004 .

[13]  K. R. Justin Thomas,et al.  Color Tuning in Benzo[1,2,5]thiadiazole‐Based Small Molecules by Amino Conjugation/Deconjugation: Bright Red‐Light‐Emitting Diodes , 2004 .

[14]  S. Uchida,et al.  Highly-efficient metal-free organic dyes for dye-sensitized solar cells. , 2003, Chemical communications.

[15]  R. Tian,et al.  Synthesis and Optical and Electroluminescent Properties of Novel Conjugated Copolymers Derived from Fluorene and Benzoselenadiazole , 2003 .

[16]  Hironori Arakawa,et al.  Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells , 2003 .

[17]  H. Tian,et al.  Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode , 2003 .

[18]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[19]  Christoph J. Brabec,et al.  A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes , 2002 .

[20]  Wei Yang,et al.  Novel Electroluminescent Polymers Derived from Carbazole and Benzothiadiazole , 2002 .

[21]  Christoph J. Brabec,et al.  Sensitization of low bandgap polymer bulk heterojunction solar cells , 2002 .

[22]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[23]  A. Ehret,et al.  Spectral Sensitization of TiO2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes , 2001 .

[24]  Raj René Janssen,et al.  Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells , 2001 .

[25]  Raj René Janssen,et al.  Low-bandgap polymer photovoltaic cells , 2001 .

[26]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[27]  Michael Grätzel,et al.  Molecular photovoltaics that mimic photosynthesis , 2001 .

[28]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[29]  H. Arakawa,et al.  A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6% , 2001 .

[30]  Chunhui Huang,et al.  Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate , 2000 .

[31]  Akira Suzuki,et al.  Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998 , 1999 .

[32]  R. Cogdell,et al.  Can photosynthesis provide a `biological blueprint' for the design of novel solar cells? , 1998 .

[33]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[34]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[35]  John K. Stille,et al.  The Palladium‐Catalyzed Cross‐Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)] , 1986 .