The Conjugate Gradient Method for Linear and Nonlinear Operator Equations
暂无分享,去创建一个
[1] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[2] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[3] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[4] M. Hestenes. Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. , 1951 .
[5] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[6] Eduard Stiefel,et al. Über einige Methoden der Relaxationsrechnung , 1952 .
[7] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[8] H. Akaike. On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method , 1959 .
[9] W. Petryshyn,et al. Direct and iterative methods for the solution of linear operator equations in Hilbert space , 1962 .
[10] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[11] A. Feinstein,et al. Variational Methods for the Study of Nonlinear Operators , 1966 .